>

> >

- >» NetLogo

Version 7

The NetLogo 7.0.0 User Manual

Programming Guide

This section describes the NetLogo programming language in detail.

The Code Example models mentioned throughout can be found in the Code Examples section of the Models Library.

Agents and Agentsets

Agents

The NetLogo world is made up of agents. Agents are beings that can follow instructions.
In NetLogo, there are four types of agents: turtles, patches, links, and the observer.

Turtles are agents that move around in the world. The world is two dimensional and is divided up into a grid of patches. Each patch is a square piece of “ground” over which turtles can move.
Links are agents that connect two turtles. The observer doesn't have a location — you can imagine it as looking out over the world of turtles and patches.

The observer doesn't observe passively - it gives instructions to the other agents.
When NetLogo starts up, there are no turtles. The observer can make new turtles. Patches can make new turtles too. (Patches can’t move, but otherwise they're just as “alive” as turtles.)

Patches have coordinates. The patch at coordinates (0, 0) is called the origin and the coordinates of the other patches are the horizontal and vertical distances from this one. We call the patch’s
coordinates pxcor and pycor . Just like in the standard mathematical coordinate plane, pxcor increases as you move to the right and pycor increases as you move up.

The total number of patches is determined by the settings min-pxcor, max-pxcor, min-pycor and max-pycor . When NetLogo starts up, min-pxcor, max-pxcor, min-pycor and max-pycor
are -16, 16, -16, and 16 respectively. This means that pxcor and pycor both range from -16 to 16, so there are 33 times 33, or 1089 patches total. (You can change the number of patches with
the Settings button.)

Turtles have coordinates too: xcor and ycor . A patch’s coordinates are always integers, but a turtle's coordinates can have decimals. This means that a turtle can be positioned at any point
within its patch; it doesn't have to be in the center of the patch.

Links do not have coordinates. Every link has two ends, and each end is a turtle. If either turtle dies, the link dies too. A link is represented visually as a line connecting the two turtles.

Agentsets

An agentset is exactly what its name implies, a set of agents. An agentset can contain either turtles, patches or links, but not more than one type at once.

An agentset is not in any particular order. In fact, it's always in a random order. And every time you use it, the agentset is in a different random order. This helps you keep your model from treat-
ing any particular turtles, patches or links differently from any others (unless you want them to be). Since the order is random every time, no one agent always gets to go first.

You've seen the turtles primitive, which reports the agentset of all turtles, the patches primitive, which reports the agentset of all patches and the links primitive which reports the agentset
of all links.

But what's powerful about the agentset concept is that you can construct agentsets that contain only some turtles, some patches or some links. For example, all the red turtles, or the patches
with pxcor evenly divisible by five, or the turtles in the first quadrant that are on a green patch or the links connected to turtle 0. These agentsets can then be used by ask or by various
reporters that take agentsets as inputs.

One way is to use turtles-here or turtles-at, to make an agentset containing only the turtles on my patch, or only the turtles on some other patch at some x and y offsets. There's also tur-
tles-on so you can get the set of turtles standing on a given patch or set of patches, or the set of turtles standing on the same patch as a given turtle or set of turtles.

Here are some more examples of how to make agentsets:

;3 all other turtles:
other turtles
;3 all other turtles on this patch:
other turtles-here
;5 all red turtles:
turtles with [color = red]
;5 all red turtles on my patch
turtles-here with [color = red]
;3 patches on right side of view
patches with [pxcor > 0]
;3 all turtles less than 3 patches away
turtles in-radius 3
;3 the four patches to the east, north, west, and south
patches at-points [[1 0] [0 1] [-1 0] [0 -1]]
;3 shorthand for those four patches
neighbors4
;3 turtles in the first quadrant that are on a green patch
turtles with [(xcor > @) and (ycor > 0)
and (pcolor = green)]
;3 turtles standing on my neighboring four patches
turtles-on neighbors4
;3 all the links connected to turtle 0
[my-links] of turtle ©

Note the use of other to exclude this agent. This is common.
Once you have created an agentset, here are some simple things you can do:

« Use ask to make the agents in the agentset do something

« Use any? to see if the agentset is empty
« Use all? to see if every agent in an agentset satisfies a condition.

« Use count to find out exactly how many agents are in the set
And here are some more complex things you can do:

« Pick a random agent from the set using one-of . For example, we can make a randomly chosen turtle turn green:

ask one-of turtles [set color green]

Or tell a randomly chosen patch to sprout a new turtle:

ask one-of patches [sprout 1]

Use the max-one-of or min-one-of reporters to find out which agent is the most or least along some scale. For example, to remove the richest turtle, you could say

ask max-one-of turtles [sum assets] [die]

.

Make a histogram of the agentset using the histogram command (in combination with of).

Use of to make a list of values, one for each agent in the agentset. Then use one of NetLogo's list primitives to do something with the list. (See the “Lists” section below.) For example, to find
out how rich turtles are on the average, you could say

show mean [sum assets] of turtles

Use turtle-set, patch-set and link-set reporters to make new agentsets by gathering together agents from a variety of possible sources.

Use no-turtles, no-patches and no-links reporters to make empty agentsets.

Check whether two agentsets are equal using = or !=.

.

Use member? to see whether a particular agent is a member of an agentset.
This only scratches the surface. See the Models Library for many more examples, and consult the NetLogo Dictionary for more information about all of the agentset primitives.

More examples of using agentsets are provided in the individual entries for these primitives in the NetLogo Dictionary.

Special agentsets
The agentsets turtles and links have special behavior because they always hold the sets of all turtles and all links. Therefore, these agentsets can grow.

The following interaction shows the special behavior. Assume the Code tab has globals [g]. Then:

observer> clear-all
observer> create-turtles 5
observer> set g turtles
observer> print count g

5

observer> create-turtles 5
observer> print count g

10
observer> set g turtle-set turtles
observer> print count g

10

observer> create-turtles 5
observer> print count g

10

observer> print count turtles
15

The turtles agentset grows when new turtles are born, but other agentsets don't grow. If | write turtle-set turtles, | get a new, normal agentset containing just the turtles that currently
exist. New turtles don't join when they're born.
Breed agentsets are special in the same way as turtles and links . Breeds are introduced and explained below.

Agentsets and lists

Earlier, we said that agentsets are always in random order, a different random order every time. If you need your agents to do something in a fixed order, you need to make a list of the agents
instead. See the Lists section below.

Code Example: Ask Ordering Example

Breeds

NetLogo allows you to define different “breeds” of turtles and breeds of links. Once you have defined breeds, you can go on and make the different breeds behave differently. For example, you
could have breeds called sheep and wolves , and have the wolves try to eat the sheep or you could have link breeds called streets and sidewalks where foot traffic is routed on sidewalks
and car traffic is routed on streets.

You define turtle breeds using the breed keyword, at the top of the Code tab, before any procedures:

breed [wolves wolf]
breed [sheep a-sheep]

You can refer to a member of the breed using the singular form, just like the turtle reporter. When printed, members of the breed will be labeled with the singular name.

Some commands and reporters have the plural name of the breed in them, such as create-<breeds>. Others have the singular name of the breed in them, such as <breed> .

The order in which breeds are declared is also the order in which they are layered in the view. So breeds defined later will appear on top of breeds defined earlier; in this example, sheep will be
drawn over wolves.

When you define a breed such as sheep, an agentset for that breed is automatically created, so that all of the agentset capabilities described above are immediately available with the sheep
agentset.

The following new primitives are also automatically available once you define a breed: create-sheep, hatch-sheep, sprout-sheep, sheep-here, sheep-at, sheep-on, and is-a-sheep?.
Also, you can use sheep-own to define new turtle variables that only turtles of the given breed have. (It's allowed for more than one breed to own the same variable.)

A turtle's breed agentset is stored in the breed turtle variable. So you can test a turtle's breed, like this:
if breed = wolves [...]

Note also that turtles can change breeds. A wolf doesn't have to remain a wolf its whole life. Let's change a random wolf into a sheep:
ask one-of wolves [set breed sheep]

The set-default-shape primitive is useful for associating certain turtle shapes with certain breeds. See the section on shapes below.
Who numbers are assigned irrespective of breeds. If you already have a frog 0, then the first mouse will be mouse 1, not mouse 0, since the who number O is already taken.

Here is a quick example of using breeds:

breed [mice mouse]
breed [frogs frog]
mice-own [cheese]
to setup
clear-all
create-mice 50
[set color white
set cheese random 10]
create-frogs 50
[set color green]
reset-ticks
end

Code Example: Breeds and Shapes Example

Link breeds
Link breeds are very similar to turtle breeds, however, there are a few differences.
When you declare a link breed you must declare whether it is a breed of directed or undirected links by using the directed-link-breed and undirected-link-breed keywords.

directed-link-breed [streets street]
undirected-link-breed [friendships friendship]

Once you have created a breeded link you cannot create unbreeded links and vice versa. (You can, however, have directed and undirected links in the same world, just not in the same breed)
Unlike with turtle breeds the singular breed name is required for link breeds, as many of the link commands and reports use the singular name, such as <link-breed>-neighbor? .

The following primitives are also automatically available once you define a directed link breed: create-street-from create-streets-from create-street-to create-streets-to in-
street-neighbor? in-street-neighbors in-street-from my-in-streets my-out-streets out-street-neighbor? out-street-neighbors out-street-to

And the following are automatically available when you define an undirected link breed: create-friendship-with create-friendships-with friendship-neighbor? friendship-neighbors

friendship-with my-friendships
Multiple link breeds may declare the same -own variable, but a variable may not be shared between a turtle breed and a link breed.

Just as with turtle breeds the order in which link breeds are declared defines the order in which the links are drawn, so the friendships will always be on top of streets (if for some reason these
breeds were in the same model). You can also use <link-breeds>-own to declare variables of each link breed separately.

You can change the breed of a link with set breed . (However, you cannot change a breeded link to an unbreeded one, to prevent having breeded and unbreeded links in the same world.)

ask one-of friendships [set breed streets]
ask one-of friendships [set breed links] ;; produces a runtime error

set-default-shape may also be used with link breeds to associate it with a particular link shape.

Code Example: Link Breeds Example

Variables

Agent variables
Agent variables are places to store values (such as numbers) in an agent. An agent variable can be a global variable, a turtle variable, a patch variable, or a link variable.
If a variable is a global variable, there is only one value for the variable, and every agent can access it. You can think of global variables as belonging to the observer.

Turtle, patch, and link variables are different. Each turtle has its own value for every turtle variable. The same goes for patches and links.

Some variables are built into NetLogo. For example, all turtles and links have a color variable, and all patches have a pcolor variable. (The patch variable begins with “p"” so it doesn't get con-
fused with the turtle variable, since turtles have direct access to patch variables.) If you set the variable, the turtle or patch changes color. (See next section for details.)

Other built-in turtle variables including xcor, ycor, and heading . Other built-in patch variables include pxcor and pycor . (There is a complete list here .)

You can also define your own variables. You can make a global variable by adding a switch, slider, chooser, or input box to your model, or by using the globals keyword at the beginning of
your code, like this:

globals [score]

You can also define new turtle, patch and link variables using the turtles-own, patches-own and links-own keywords, like this:

turtles-own [energy speed]
patches-own [friction]
links-own [strength]

These variables can then be used freely in your model. Use the set command to set them. (Any variable you don't set has a starting value of zero.)

Global variables can be read and set at any time by any agent. As well, a turtle can read and set patch variables of the patch it is standing on. For example, this code:
ask turtles [set pcolor red]

causes every turtle to make the patch it is standing on red. (Because patch variables are shared by turtles in this way, you can't have a turtle variable and a patch variable with the same name.)

In other situations where you want an agent to read a different agent'’s variable, you can use of . Example:

show [color] of turtle 5
;3 prints current color of turtle with who number 5

You can also use of with a more complicated expression than just a variable name, for example:

show [xcor + ycor] of turtle 5
;3 prints the sum of the x and y coordinates of
;5 turtle with who number 5

Local variables

A local variable is defined and used only in the context of a particular procedure or part of a procedure. To create a local variable, use the let command. If you use let at the top of a proce-
dure, the variable will exist throughout the procedure. If you use it inside a set of square brackets, for example inside an “ask”, then it will exist only inside those brackets.

to swap-colors [turtlel turtle2]
let temp [color] of turtlel
ask turtlel [set color [color] of turtle2]
ask turtle2 [set color temp]

end

Links

A link is an agent that connects two turtles. These turtles are sometimes also called nodes.

The link is always drawn as a line between the two turtles. Links do not have a location as turtles do, they are not considered to be on any patch and you cannot find the distance from a link to
another point.

There are two link designations: undirected and directed. A directed link is out of, or from, one node and into, or to, another node. The relationship of a parent to a child could be modeled as a
directed link. An undirected link appears the same to both nodes, each node has a link with another node. The relationship between spouses, or siblings, could be modeled as an undirected link.

There is a global agentset of all links, just as with turtles and patches. You can create undirected links using the create-link-with and create-links-with commands; and directed links
using the create-link-to, create-links-to, create-link-from, and create-links-from commands. Once the first link has been created directed or undirected, all unbreeded links must
match (links also support breeds, much like turtles, which will be discussed shortly); it's impossible to have two unbreeded links where one is directed and the other is undirected. A runtime
error occurs if you try to do it. (If all unbreeded links die, then you can create links of that breed that are different in designation from the previous links.)

In general, link primitive names indicate what kind of links they deal with:

« Primitives that have “out"” in their name utilize outgoing and undirected links. You can think of these as “the links | can use to get from the current node to other nodes.” In general, these are
probably the primitives you want to use.

« Primitives that have “in” in their name utilize incoming and undirected links. You can think of these as “the links | can use to get to the current node from other nodes.”

« Primtives that do not specify “in” or "out”, or have "with" in their name utilize all links, both undirected and directed, incoming and outgoing.

Alink's endl and end2 variables contain the two turtles the link connects. If the link is directed, it goes from end1to end2. If the link is undirected, end1is always the older of the two turtles,
that is, the turtle with the smaller who number.

Link breeds, like turtle breeds, allow you to define different types of links in your model. Link breeds must either be directed or undirected, unlike unbreeded links this is defined at compile time
rather than run time. You declare link breeds using the keywords undirected-link-breed and directed-link-breed . Breeded links can be created using the commands create-<breed>-
with and create-<breeds>-with for undirected breeds and the commands create-<breed>-to, create-<breeds>-to, create-<breed>-from, and create-<breeds>-from for directed links.

There cannot be more than one undirected link of the same breed (or more than one unbreeded undirected link) between a pair of agents, nor more than one directed link of the same breed in
the same direction between a pair of agents. You can have two directed links of the same breed (or two unbreeded directed links) between a pair if they are in opposite directions.

Layouts

As part of our network support we have also added several different primitives that will help you to visualize the networks. The simplest is layout-circle which evenly spaces the agents
around the center of the world given a radius.

layout-radial is a good layout if you have something like a tree structure, though even if there are some cycles in the tree it will still work, though as there are more and more cycles it will
probably not look as good. layout-radial takes a root agent to be the central node places it at (0,0) and arranges the nodes connected to it in a concentric pattern. Nodes one degree away
from the root will be arranged in a circular pattern around the central node and the next level around those nodes and so on. layout-radial will attempt to account for asymmetrical graphs
and give more space to branches that are wider. layout-radial also takes a breed as an input so you use one breed of links to layout the network and not another.

Given a set of anchor nodes layout-tutte places all the other nodes at the center of mass of the nodes it is linked to. The anchor set is automatically arranged in a circle layout with a user
defined radius and the other nodes will converge into place (this of course means that you may have to run it several times before the layout is stable.)

layout-spring is useful for many kinds of networks. The drawback is that is relatively slow since it takes many iterations to converge. In this layout the links act as springs that pull the nodes
they connect toward each other and the nodes repel each other. The strength of the forces is controlled by inputs to the primitives. These inputs will always have a value between 0 and 1; keep
in mind that very small changes can still affect the appearance of the network. The springs also have a length (in patch units), however, because of all the forces involved the nodes will not end
up exactly that distance from each other.

Code Examples: Network Example, Network Import Example, Giant Component, Small Worlds, Preferential Attachment

Tie
Tie connects two turtles so that the movement of one turtles affects the location and heading of another. Tie is a property of links so there must be a link between two turtles to create a tie
relationship.

When a link’s tie-mode is set to “fixed" or “free” endl and end2 are tied together. If the link is directed endl is the “root agent” and end2 is the “leaf agent”. That is when end1l moves (using
fd, jump, setxy, etc.) end2 also moves the same distance and direction. However when end2 moves it does not affect endl.

If the link is undirected it is a reciprocal tie relationship, meaning, if either turtle moves the other turtle will also move. So depending on which turtle is moving either turtle can be considered the
root or the leaf. The root turtle is always the turtle that initiates the movement.

When the root turtle turns right or left, the leaf turtle rotates around the root turtle the same amount as if a stiff were attaching the turtles. When tie-mode is set to “fixed” the heading of the leaf
turtle changes by the same amount. If the tie-mode is set to “free” the heading of the leaf turtle is unchanged.

The tie-mode of alink can be set to “fixed” using the tie command and set to “none” (meaning the turtles are no longer tied) using untie to set the mode to “free” you need to: set tie-
mode "free".

Code Example: Tie System Example

Drawing

The drawing is a layer where turtles can make visible marks.
In the view, the drawing appears on top of the patches but underneath the turtles. Initially, the drawing is empty and transparent.
You can see the drawing, but the turtles (and patches) can't. They can't sense the drawing or react to it. The drawing is just for people to look at.

Turtles can draw and erase lines in the drawing using the pen-down and pen-erase commands. When a turtle’s pen is down (or erasing), the turtle draws (or erases) a line behind it whenever it
moves. The lines are the same color as the turtle. To stop drawing (or erasing), use pen-up .

Lines drawn by turtles are normally one pixel thick. If you want a different thickness, set the pen-size turtle variable to a different number before drawing (or erasing). In new turtles, the vari-
ableis setto 1.

Lines made when a turtle moves in a way that doesn't fix a direction, such as with setxy or move-to, the shortest path line that obeys the topology will be drawn.

Here's some turtles which have made a drawing over a grid of randomly shaded patches. Notice how the turtles cover the lines and the lines cover the patch colors. The pen-size used here
was 2:

The stamp command lets a turtle leave an image of itself behind in the drawing and stamp-erase lets it remove the pixels below it in the drawing.
To erase the whole drawing, use the observer commmand clear-drawing . (You can also use clear-all, which clears everything else too.)
Importing an image

The observer command import-drawing command allows you to import an image file from disk into the drawing.

import-drawing is useful only for providing a backdrop for people to look at. If you want turtles and patches to react to the image, you should use import-pcolors or import-pcolors-rgh
instead.

Comparison to other Logos
Drawing works somewhat differently in NetLogo than some other Logos.
Notable differences include:

« New turtles’ pens are up, not down.
« Instead of using a fence command to confine the turtle inside boundaries, in NetLogo you edit the world and turn wrapping off.

« Thereis no screen-color, bgcolor, or setbg. You can make a solid background by coloring the patches, e.g. ask patches [set pcolor blue].
Drawing features not supported by NetLogo:

« There is no window command. This is used in some other Logos to let the turtle roam over an infinite plane.

« Thereisno flood or fill command to fill an enclosed area with color.

Turtle shapes

In NetLogo, turtle shapes are vector shapes. They are built up from basic geometric shapes; squares, circles, and lines, rather than a grid of pixels. Vector shapes are fully scalable and rotat-
able. NetLogo caches bitmap images of vector shapes size 1, 1.5, and 2 in order to speed up execution.

A turtle’s shape is stored in its shape variable and can be set using the set command.

New turtles have a shape of "default”. The set-default-shape primitive is useful for changing the default turtle shape to a different shape, or having a different default turtle shape for each
breed of turtle.

The shapes primitive reports a list of currently available turtle shapes in the model. This is useful if, for example, you want to assign a random shape to a turtle:
ask turtles [set shape one-of shapes]

Use the Turtle Shapes Editor to create your own turtle shapes, or to add shapes to your model from our shapes library, or to transfer shapes between models. For more information, see the
Shapes Editor section of this manual.

The thickness of the lines used to draw the vector shapes can be controlled by the __set-line-thickness primitive.

Code Examples: Breeds and Shapes Example, Shape Animation Example

Link shapes

Link Shapes are similar to turtle shapes, only you use the Link Shape Editor to create and edit them. Link shapes consist of between 0 and 3 lines which can have different patterns and a direc-
tion indicator that is composed of the same elements as turtle shapes. Links also have a shape variable that can be set to any link shape that is in the model. By default links have the “default”
shape, though you can change that using set-default-shape. The link-shapes reporter reports all the link shapes included in the current model.

The thickness of the lines in the link shape is controlled by the thickness link variable.

Programming

Procedures

In NetLogo, commands and reporters tell agents what to do. A command is an action for an agent to carry out, resulting in some effect. A reporter is instructions for computing a value, which
the agent then “reports” to whoever asked it.

Typically, a command name begins with a verb, such as “create”, “die", “jump", “inspect”, or “clear”. Most reporter names are nouns or houn phrases.

Commands and reporters built into NetLogo are called primitives. The NetLogo Dictionary has a complete list of built-in commands and reporters.

file:///tmp/sbt_f1cee2bd/shapes.html
file:///tmp/sbt_f1cee2bd/dictionary.html

Commands and reporters you define yourself are called procedures. Each procedure has a name, preceded by the keyword to or to-report, depending on whether it is a command proce-
dure or a reporter procedure. The keyword end marks the end of the commands in the procedure. Once you define a procedure, you can use it elsewhere in your program.

Many commands and reporters take inputs - values that the command or reporter uses in carrying out its actions or computing its result.
Here are two command procedures:
to setup
clear-all

create-turtles 10
reset-ticks

end
to go
ask turtles [
fd 1 ;3 forward 1 step
rt random 10 ;3 turn right
1t random 10 ;5 turn left
1
tick
end

Note the use of semicolons to add “comments” to the program. Comments can make your code easier to read and understand, but they don't affect its behavior.

In this program,

setup and go are user-defined commands.

.

clear-all, create-turtles, reset-ticks, ask, 1t (“leftturn”), rt (“rightturn”) and tick, are all primitive commands.

.

random and turtles are primitive reporters. random takes a single number as an input and reports a random integer that is less than the input (in this case, between 0 and 9). turtles
reports the agentset consisting of all the turtles. (We'll explain about agentsets later.)

setup and go can be called by other procedures, or by buttons, or from the Command Center.
Many NetLogo models have a once button that calls a procedure called setup and a forever button that calls a procedure called go .

In NetLogo, you may specify which agents - turtles, patches, or links — are to run each command. If you don't specify, the code is run by the observer. In the code above, the observer uses ask
to make the set of all turtles run the commands between the square brackets.

clear-all and create-turtles can only be run by the observer. fd, on the other hand, can only be run by turtles. Some other commands and reporters, such as set and ticks, can be run
by different agent types.

Here are some more advanced features you can take advantage of when defining your own procedures.
Procedures with inputs

Procedures can take inputs, just like many primitives do. To create a procedure that accepts inputs, put their names in square brackets after the procedure name. For example:

to draw-polygon [num-sides len] ;; turtle procedure
pen-down
repeat num-sides [
fd len

rt 360 / num-sides

Elsewhere in the program, you might use the procedure by asking the turtles to each draw an octagon with a side length equal to its who number:

ask turtles [draw-polygon 8 who]

Reporter procedures

Just like you can define your own commands, you can define your own reporters. You must do two special things. First, use to-report instead of to to begin your procedure. Then, in the
body of the procedure, use report to report the value you want to report.

to-report absolute-value [number]
ifelse number >= 0
[report number]
[report (- number)]
end

Ask
NetLogo uses the ask command to give commands to turtles, patches, and links. All code to be run by turtles must be located in a turtle “context”. You can establish a turtle context in any of
three ways:

« Inabutton, by choosing “Turtles” from the popup menu. Any code you put in the button will be run by all turtles.
« Inthe Command Center, by choosing “Turtles” from the popup menu. Any commands you enter will be run by all the turtles.

« Byusing ask turtles, hatch, or other commands which establish a turtle context.
The same goes for patches, links, and the observer, except that you cannot ask the observer. Any code that is not inside any ask is by default observer code.
Because agentset members are always read in a random order, when ask is used with an agentset each agent will take its turn in a random order. See Agentsets for more information.

Here's an example of the use of ask in a NetLogo procedure:

to setup

clear-all
create-turtles 100 ;; create 100 turtles with random headings
ask turtles

[set color red ;3 turn them red

fd 50] ;3 spread them around

ask patches

[if pxcor > 0 ;; patches on the right side

[set pcolor green]] ;; of the view turn green

reset-ticks
end

The models in the Models Library are full of other examples. A good place to start looking is in the Code Examples section.

Usually, the observer uses ask to ask all turtles, all patches or all links to run commands. You can also use ask to have an individual turtle, patch or link run commands. The reporters turtle,
patch, link and patch-at are useful for this technique. For example:

to setup
clear-all
crt 3 ;5 make 3 turtles
ask turtle 0 ;; tell the first one...
[fd 1] ;3 ...to go forward
ask turtle 1 ;3 tell the second one...
[set color green] ;3 ...to become green
ask turtle 2 ;; tell the third one...
[rt 90 1] ;3 ...to turn right
ask patch 2 -2 ;3 ask the patch at (2,-2)
[set pcolor blue] ;3 ...to become blue
ask turtle 0 ;; ask the first turtle
[ask patch-at 1 0 ;; ...to ask patch to the east
[set pcolor red]] ;; ...to become red
ask turtle 0 ;; tell the first turtle...
[create-link-with turtle 1 1 ;; ...make a link with the second
ask link 0 1 ;3 tell the link between turtle 0 and 1
[set color blue] ;3 ...to become blue
reset-ticks
end

Every turtle created has a who number. The first turtle created is number 0, the second turtle number 1, and so forth.

The turtle primitive reporter takes a who number as an input, and reports the turtle with that who number. The patch primitive reporter takes values for pxcor and pycor and reports the patch
with those coordinates. The link primitive takes two inputs, the who numbers of the two turtles it connects. And the patch-at primitive reporter takes offsets: distances, in the x and y direc-
tions, from the first agent. In the example setup procedure above, the turtle with who number 0 is asked to get the patch east (and no patches north) of itself like this: ask turtle 0 [ask
patch-at 1 @ [set pcolor red] 1.

You can also select a subset of turtles, or a subset of patches, or a subset of links and ask them to do something. This involves using agentsets. The next section explains them in detail.

When you ask a set of agents to run more than one command, each agent must finish before the next agent starts. One agent runs all of the commands, then the next agent runs all of them, and
so on. For example, if you write:

ask turtles
[fd 1
set color red]
first one turtle moves and turns red, then another turtle moves and turns red, and so on.
But if you write it this way:

ask turtles [fd 1]
ask turtles [set color red]

first all the turtles move, then they all turn red.

Ask-Concurrent

NOTE: The following information is included only for backwards compatibility. We don’t recommend using the ask-concurrent primitive at all in new models.
In very old versions of NetLogo, ask had simulated concurrent behavior by default. Since NetLogo 4.0 (2007), ask is serial, that is, the agents run the commands inside the ask one at a time.
The following information describes the behavior of the ask-concurrent command, which behaves the way the old ask behaved.

ask-concurrent produces simulated concurrency via a mechanism of turn-taking. The first agent takes a turn, then the second agent takes a turn, and so on until every agent in the asked
agentset has had a turn. Then we go back to the first agent. This continues until all of the agents have finished running all of the commands.

An agent’s “turn” ends when it performs an action that affects the state of the world, such as moving, or creating a turtle, or changing the value of a global, turtle, patch, or link variable. (Setting
a local variable doesn't count.)

The forward (fd)and back (bk)commands are treated specially. When used inside ask-concurrent, these commands can take multiple turns to execute. During its turn, the turtle can only
move by one step. Thus, for example, fd 20 is equivalentto repeat 20 [fd 1], where the turtle’s turn ends after each run of fd. If the distance specified isn't an integer, the last fraction of
step takes a full turn. So for example fd 20.3 is equivalentto repeat 20 [fd 1] fd 0.3.

The jump command always takes exactly one turn, regardless of distance.

To understand the difference between ask and ask-concurrent, consider the following two commands:

ask turtles [fd 5 1]
ask-concurrent turtles [fd 5]
With ask , the first turtle takes five steps forward, then the second turtle takes five steps forward, and so on.

With ask-concurrent, all of the turtles take one step forward. Then they all take a second step, and so on. Thus, the latter command is equivalent to:

repeat 5 [ask turtles [fd 1]]

Code Example: Ask-Concurrent Example shows the difference between ask and ask-concurrent.

The behavior of ask-concurrent cannot always be so simply reproduced using ask, as in this example. Consider this command:
ask-concurrent turtles [fd random 10]

In order to get the same behavior using ask, we would have to write:

turtles-own [steps]
ask turtles [set steps random 10]
while [any? turtles with [steps > 0]] [
ask turtles with [steps > 0] [
fd 1
set steps steps - 1

To prolong an agent's “turn”, use the without-interruption command. (The command blocks inside some commands, such as create-turtles and hatch, have an implied without-inter-
ruption around them.)

Note that the behavior of ask-concurrent is completely deterministic. Given the same code and the same initial conditions, the same thing will always happen (if you are using the same ver-
sion of NetLogo and begin your model run with the same random seed).

In general, we suggest you not use ask-concurrent at all. If you do, we suggest you write your model so that it does not depend on the exact details of how ask-concurrent works. We make
no guarantees that its semantics will remain the same in future versions of NetLogo, or that it will continue to be supported at all.

Syntax

Colors

In the Code tab and elsewhere in the NetLogo user interface, program code is color-coded by the following scheme:

Keywords are green

Constants are orange

Comments are gray

Primitive commands are blue

.

Primitive reporters are purple

Everything else is black

Notice

The remainder of this section contains technical terminology which will be unfamiliar to some readers.
Keywords

The only keywords in the language are globals, breed, turtles-own, patches-own, to, to-report,and end, plus extensions and the experimental __includes keyword. (Built-in primi-
tive names may not be shadowed or redefined, so they are effectively a kind of keyword as well.)

Identifiers
All primitives, global and agent variable names, and procedure names share a single global case-insensitive namespace; local names (let variables and the names of procedure inputs) may
not shadow global names or each other. Identifiers may contain any Unicode letter or digit and the following ASCII characters:

e

Some primitive names begin with two underscores to indicate that they are experimental and are especially likely to change or be removed in future NetLogo releases.

Scope

NetLogo is lexically scoped. Local variables (including inputs to procedures) are accessible within the block of commands in which they are declared, but not accessible by procedures called by
those commands.

Comments
The semicolon character introduces a comment, which lasts until the end of the line. There is no multi-line comment syntax.

Structure

A program consists of optional declarations (globals, breed, turtles-own, patches-own, <BREED>-own, extensions) in any order, followed by zero or more procedure definitions. Multiple
breeds may be declared with separate breed declarations; the other declarations may appear once only.

Every procedure definition begins with to or to-report, the procedure name, and an optional bracketed list of input names. Every procedure definition ends with end . In between are zero or
more commands.

Commands and reporters

Commands take zero or more inputs; the inputs are reporters, which may also take zero or more inputs. No punctuation separates or terminates commands; no punctuation separates inputs.
Identifiers must be separated by whitespace or by parentheses or square brackets. (So for example, a+b is a single identifier, but a(b[c]d)e contains five identifiers.)

All commands are prefix. All user-defined reporters are prefix. Most primitive reporters are prefix, but some (arithmetic operators, boolean operators, and some agentset operators like with and
in-points) are infix.

All commands and reporters, both primitive and user-defined, take a fixed number of inputs by default. (That's why the language can be parsed though there is no punctuation to separate or ter-
minate commands and/or inputs.) Some primitives are variadic, that is, may optionally take a different number of inputs than the default; parentheses are used to indicate this, e.g. (list 1 2
3) (since the list primitive only takes two inputs by default). Parentheses are also used to override the default operator precedence, e.g. (1 + 2) * 3, as in other programming languages.

Sometimes an input to a primitive is a command block (zero or more commands inside square brackets) or a reporter block (a single reporter expression inside square brackets). User-defined
procedures may not take a command or reporter block as input.

Operator precedences are as follows, high to low:

e with, with-min, with-max, at-points, in-radius, in-cone, who-are-not

o of

All other primitives and user-defined procedures, including not

and, or, xor

.

ifelse-value

When an expression contains multiple operators with the same precedence, they are read in code order left-to-right. Example: true or false and false isreadas (true or false) and
false and soresultsin (true) and false, whichis false. This is different than many other programming languages where or has a lower precedence than and, so the above statement
would be read as true or (false and false), true or (false), so true. You can surround expressions in parentheses to ensure you get your desired order of operations.

Compared to other Logos

There is no agreed-upon standard definition of Logo; it is a loose family of languages. We believe that NetLogo has enough in common with other Logos to earn the Logo name. Still, NetLogo
differs in some respects from most other Logos. The most important differences are as follows.

Surface differences

.

The precedence of mathematical operators is different. Infix math operators (like +, *, etc.) have lower precedence than reporters with names. For example, in many Logos, if you write sin
x + 1, it will be interpreted as sin (x + 1) . NetLogo, on the other hand, interprets it the way most other programming languages would, and the way the same expression would be
interpreted in standard mathematical notation, namely as (sin x) + 1.

.

The and and or reporters are special forms, not ordinary functions, and they “short circuit”, that is, they only evaluate their second input if necessary.

Procedures can only be defined in the Code tab, not interactively in the Command Center.

Reporter procedures, that is, procedures that “report” (return) a value, must be defined with to-report instead of to.The command to report a value from a reporter procedure is report,
not output.

When defining a procedure, the inputs to the procedure must be enclosed in square brackets, e.g. to square [x].

Variable names are always used without any punctuation: always foo, never :foo or "foo . (To make this work, instead of a make command taking a quoted argument we supply a set
special form which does not evaluate its first input.) As a result, procedures and variables occupy a single shared namespace.

The last three differences are illustrated in the following procedure definitions:

most Logos NetLogo

to square :x to-report square [x]
output :x * :x report x * x
end end

Deeper differences

NetLogo's local variables and inputs to procedures are lexically scoped, not dynamically scoped.

NetLogo has no "word" data type (what Lisp calls “symbols”). Eventually, we may add one, but since it is seldom requested, it may be that the need doesn't arise much in agent-based
modeling. We do have strings. In most situations where traditional Logo would use words, we simply use strings instead. For example in Logo you could write [see spot run] (a list of
words), but in NetLogo you must write "see spot run" (a string) or ["see" "spot" "run"] (a list of strings) instead.

NetLogo's run command works on anonymous procedures and strings, not lists (since we have no “word" data type), and does not permit the definition or redefinition of procedures.

Control structures such as if and while are special forms, not ordinary functions. You can't define your own special forms, so you can't define your own control structures. (You can do

something similar using anonymous procedures, but you must use the ->, run, and runresult primitives for that, you cannot make them implicit.)

Anonymous procedures (aka function values or lambda) are true lexically-scoped closures. This feature is available in NetLogo and in modern Lisps, but not in standard Logo.

Of course, the NetLogo language also contains other features not found in most Logos, most importantly agents and agentsets.

Multiple source files

The __includes keyword allows you to use multiple source files in a single NetLogo model.

The keyword begins with two underscores to indicate that the feature is experimental and may change in future NetLogo releases.

When you open a model that uses the __includes keyword, or if you add it to the top of a model and hit the Check button, the includes menu will appear in the toolbar. From the includes menu
you can select from the files included in this model.

When you open included files they appear in additional tabs. See the Interface Guide for more details.

You can have anything in external source files (.nls) that you would normally put in the Code tab: globals, breed, turtles-own, patches-own, breeds-own, procedure definitions, etc. Note
though that these declarations all share the same namespace. That is, if you declare a global my-global in the Code tab you cannot declare a global (or anything else) with the name my-
global in any file that is included in the model. my-global will be accessible from all the included files. The same would be true if my-global were declared in one of the included files.

Buttons

Buttons in the interface tab provide an easy way to control the model. Typically a model will have at least a “setup” button, to set up the initial state of the world, and a “go” button to make the
model run continuously. Some models will have additional buttons that perform other actions.

A button contains some NetLogo code. That code is run when you press the button.

A button may be either a “once button”, or a “forever button”. You can control this by editing the button and checking or unchecking the “Forever” checkbox. Once buttons run their code once,
then stop and pop back up. Forever buttons keep running their code over and over again.

A forever button stops if the user presses the button again to stop it. The button waits until the current iteration has finished, then pops up.

A forever button can also be stopped from code. If the forever button directly calls a procedure, then when that procedure stops, the button stops. (In a turtle or patch forever button, the button
won't stop until every turtle or patch stops - a single turtle or patch doesn't have the power to stop the whole button.)

Normally, a button is labeled with the code that it runs. For example, a button that says “go” on it usually contains the code “go”, which means “run the go procedure”. (Procedures are defined in
the Code tab; see below.) But you can also edit a button and enter a “display name” for the button, which is a text that appears on the button instead of the code. You might use this feature if
you think the actual code would be confusing to your users.

When you put code in a button, you must also specify which agents you want to run that code. You can choose to have the observer run the code, or all turtles, or all patches, or all links. (If you
want the code to be run by only some turtles or some patches, you could make an observer button, and then have the observer use the ask command to ask only some of the turtles or patches
to do something.)

When you edit a button, you have the option to assign an “action key”. This makes that key on the keyboard behave just like a button press. If the button is a forever button, it will stay down until
the key is pressed again (or the button is clicked). Action keys are particularly useful for games or any model where rapid triggering of buttons is needed.

Buttons take turns

More than one button can be pressed at a time. If this happens, the buttons “take turns”, which means that only one button runs at a time. Each button runs its code all the way through once
while the other buttons wait, then the next button gets its turn.

In the following examples, “setup” is a once button and “go” is a forever button.
Example #1: The user presses “setup”, then presses “go” immediately, before the “setup” has popped back up. Result: “setup” finishes before “go” starts.
Example #2: While the “go” button is down, the user presses “setup”. Result: the “go” button finishes its current iteration. Then the “setup” button runs. Then “go” starts running again.

Example #3: The user has two forever buttons down at the same time. Result: first one button runs its code all the way through, then the other runs its code all the way through, and so on,
alternating.

Note that if one button gets stuck in an infinite loop, then no other buttons will run.
Turtle, patch, and link forever buttons

There is a subtle difference between putting commands in a turtle, patch or link forever button, and putting the same commands in an observer button that does ask turtles, ask patches or
ask links.An "ask” doesn't complete until all of the agents have finished running all of the commands in the “ask”. So the agents, as they all run the commands concurrently, can be out of
sync with each other, but they all sync up again at the end of the ask. The same isn't true of turtle, patch and link forever buttons. Since ask was not used, each turtle or patch runs the given
code over and over again, so they can become (and remain) out of sync with each other.

At present, this capability is very rarely used in the models in our Models Library. A model that does use the capability is the Termites model, in the Biology section of Sample Models. The “go”
button is a turtle forever button, so each termite proceeds independently of every other termite, and the observer is not involved at all. This means that if, for example, you wanted to add ticks
and/or a plot to the model, you would need to add a second forever button (an observer forever button), and run both forever buttons at the same time. Note also that a model like this cannot be
used with BehaviorSpace.

Code Example: State Machine Example shows how Termites can be recoded in a tick-based way, without using a turtle forever button.

At present, NetLogo has no way for one forever button to start another. Buttons are only started when you press them.

Anonymous procedures

Anonymous procedures let you store code to be run later. Just like regular NetLogo procedures, an anonymous procedures can be either a command (anonymous command) or a reporter
(anonymous reporter).

Anonymous procedures are values, which means they may be passed as input, reported as a result, or stored in a variable.

An anonymous procedure might be run once, multiple times, or not at all.

In other programming languages anonymous procedures are known as first-class functions, closures, or lambda.

Anonymous procedure primitives

Primitives specific to anonymous procedures are ->, is-anonymous-command? , and is-anonymous-reporter? .

The -> creates an anonymous procedure. The anonymous procedure it reports might be a command or a reporter, depending on what kind of block you pass it. For example [-> fd 1]
reports an anonymous command, because fd is a command, while [-> count turtles] reports an anonymous reporter, because count is a reporter.

These primitives require anonymous procedures as input: foreach, map, reduce, filter, n-values, sort-by.When calling these primitives, using an -> is optional if your anonymous pro-
cedure contains a single primitive which has requires no more inputs than are are provided by the primitive. For example one may write simply foreach mylist print instead of foreach
mylist [[x] -> print x], though the latter is also accepted. Depending on the anonymous procedure, various parts of the anonymous procedure syntax can be omitted. For a summary of
optional syntax, see the table below.

The run command accepts anonymous commands as well as strings.
The runresult reporter accepts anonymous reporters as well as strings.

run and runresult allow passing inputs to an anonymous procedure. As with all primitives accepting varying number of inputs, the whole call must be surrounded with parentheses, so for
example (run my-anonymous-command 5) or (runresult my-anonymous-reporter "foo" 2).When not passing input, no parentheses are required.

Anonymous procedure inputs

An anonymous procedure may take zero or more inputs. The inputs are referenced the variables declared before the arrow. For instance, in the anonymous reporter [[a b] ->a + b], a
and b are inputs.

Anonymous procedures and strings

Creating and running anonymous procedures is fast. To use run or runresult on a new string for the first time is about 100x slower than running an anonymous procedure. Modelers should
normally use anonymous procedures instead of running strings, except when running strings entered by the user.

Concise syntax

Simple uses of foreach, map, reduce, filter, n-values, and sort-by can be written with an especially concise syntax. You can write:

map abs [1 -2 3 -4]
;ipo=>[1234]

reduce + [1 2 3 4]

5 => 10

filter is-number? [1 "x" 3]
ii => [13]

foreach [1 2 3 4] print

;3 prints 1 through 4

In older NetLogo versions (4 and earlier), these had to be written:

map [abs ?] [1 -2 3 -4]

5 =>[1234]

reduce [?1 + ?2] [1 2 3 4]

;3 => 10

filter [is-number? ?] [1 "x" 3]
;i => [13]

foreach [1 2 3 4] [print ?]
;3 prints 1 through 4

Anonymous procedures as closures

Anonymous procedures are “closures”; that means they capture or “close over” the bindings (not just the current values) of local variables and procedure inputs. They do not capture agent vari-
ables and do not capture the identity (or even the agent type) of the current agent.

Nonlocal exits

The stop and report commands exit from the dynamically enclosing procedure, not the enclosing anonymous procedure. (This is backward-compatible with older NetLogo versions.)
Anonymous procedures and extensions

The extensions API supports writing primitives that accept anonymous procedures as input. Write us for sample code.

Limitations

We hope to address at least some of the following limitations in future NetLogo versions:

import-world does not support anonymous procedures.

Anonymous procedures can't be variadic (accept a varying number of inputs).

Anonymous reporters can't contain commands, only a single reporter expression. So for example you must use ifelse-value not if, and you don't use report at all. If your code is too
complex to be written as one reporter, you'll need to move the code to a separate reporter procedure, and then call that procedure from your anonymous reporter, passing it any needed
inputs.

Anonymous procedures are not interchangeable with command blocks and reporter blocks. Only the primitives listed above accept anonymous procedures as input. Control primitives such as
ifelse and while and agent primitives such as of and with don't accept anonymous procedures. So for example if | have an anonymous reporter let r [-> if random 2 == 0] and
two anonymous commands let c1 [-> tick] and let c2 [-> stop 1,lcan'twrite ifelse r cl c2,|mustwrite ifelse runresult r [run c1] [run c2].

The concise syntax where -> may be omitted is only available to primitives and extension primitives, not ordinary procedures. So for example if | have a procedure p that accepts an
anonymous procedure as input, it mustbe calledase.g. p [-> ... T notp [...].

What is Optional?

There are several different ways of writing anonymous procedures which allow users to omit part or all of the anonymous procedure syntax. These are summarized in the table below.

procedure like? ? Examples
The anonymous procedure is a single primitive « input names foreach mylist stamp ; no inputs
e arrow foreach mylist print ; single input
« block brackets (foreach xs ys setxy) ; multiple inputs

map round [1.3 2.4 3.5] ; reporter, single input

(map + [1 2 3] [4 56]) ; reporter, multiple inputs

The anonymous procedure takes no inputs input names foreach mylist [print "abc"]

arrow map [4] mylist

the anonymous procedure like? t can be left out? Examples
The anonymous procedure has zero or one input(s) « brackets around input names foreach mylist [-> stamp] ; no inputs
foreach mylist [x -> print x] ; single input

foreach mylist [x -> rt x fd x 1 ; multiple primitives, single input
map [-> world-width] mylist ; reporter, no inputs

map [x -> x ~ 2] mylist ; reporter, single input

Anonymous procedure takes more than one input « nothing (foreach xs ys [[xy 1 -> setx x +y 1)

(map [[xy 1 ->xmod round y] xs ys)

Note: brackets around input names were always required in NetLogo 6.0.0. If you copy and paste code into NetLogo 6.0.0 using anonymous procedures with unbracketed input names, the
code will not compile until you add the brackets.

Code example

Code Example: State Machine Example

Tick counter

In many NetLogo models, time passes in discrete steps, called "ticks". NetLogo includes a built-in tick counter so you can keep track of how many ticks have passed.
The current value of the tick counter is shown above the view. (You can use the Settings button to hide the tick counter, or change the word “ticks” to something else.)

In code, to retrieve the current value of the tick counter, use the ticks reporter. The tick command advances the tick counter by 1. The clear-all command clears the tick counter along
with everything else.

When the tick counter is clear, it's an error to try to read or modify it. Use the reset-ticks command when your model is done setting up, to start the tick counter.
If your model is set to use tick-based updates, then the tick command will usually also update the view. See the later section, View Updates.
When to tick
Use reset-ticks atthe end of your setup procedure.
Use tick atthe end of your go procedure.
to setup
clear-all
create-turtles 10

reset-ticks
end

to go
ask turtles [fd 11
tick

end

Fractional ticks
In most models, the tick counter starts at 0 and goes up 1 at a time, from integer to integer. But it's also possible for the tick counter to take on in-between floating point values.
To advance the tick counter by a fractional amount, use the tick-advance command. This command takes a numeric input specifying how far to advance the tick counter.

A typical use of fractional ticks is to approximate continuous or curved motion. See, for example, the GasLab models in the Models Library (under Chemistry & Physics). These models calculate
the exact time at which a future event is to occur, then advance the tick counter to exactly that time.

View updates

The "view" in NetLogo lets you see the agents in your model on your computer’s screen. As your agents move and change, you see them moving and changing in the view.

Of course, you can't really see your agents directly. The view is a picture that NetLogo paints, showing you how your agents look at a particular instant. Once that instant passes and your agents
move and change some more, that picture needs to be repainted to reflect the new state of the world. Repainting the picture is called "updating” the view.

When does the view get updated? This section discusses how NetLogo decides when to update the view, and how you can influence when it gets updated.

NetLogo offers two updates modes, “continuous” updates and “tick-based"” updates. You can switch between NetLogo's two view update modes using a popup menu at the top of the Interface
tab.

Continuous updates are the default when you start up NetLogo or start a new model. Nearly every model in our Models Library, however, uses tick-based updates.
Continuous updates are simplest, but tick-based updates give you more control over when and how often updates happen.

It's important exactly when an update happens, because when updates happen determines what you see on the screen. If an update comes at an unexpected time, you may see something
unexpected — perhaps something confusing or misleading.

It's also important how often updates happen, because updates take time. The more time NetLogo spends updating the view, the slower your model will run. With fewer updates, your model
runs faster.

Continuous updates

Continuous updates are very simple. With continuous updates, NetLogo updates the view a certain number of times per second — by default, 30 times a second when the speed slider is in the
default, middle setting.

If you move the speed slider to a slower setting, NetLogo will update more than 30 times a second, effectively slowing down the model. On a faster setting, NetLogo will update less than 30
times a second. On the fastest setting, updates will be separated by several seconds.

At extremely slow settings, NetLogo will be updating so often that you will see your agents moving (or changing color, etc.) one at a time.

If you need to temporarily shut off continuous updates, use the no-display command. The display command turns updates back on, and also forces an immediate update (unless the user is
fast-forwarding the model using the speed slider).

Tick-based updates

As discussed above in the Tick Counter section, in many NetLogo models, time passes in discrete steps, called “ticks". Typically, you want the view to update once per tick, between ticks.
That's the default behavior with tick-based updates.

If you want additional view updates, you can force an update using the display command. (The update may be skipped if the user is fast-forwarding the model using the speed slider.)
You don't have to use the tick counter to use tick-based updates. If the tick counter never advances, the view will update only when you use the display command.

If you move the speed slider to a fast enough setting, eventually NetLogo will skip some of the updates that would ordinarily have happened. Moving the speed slider to a slower setting doesn't
cause additional updates; rather, it makes NetLogo pause after each update. The slower the setting, the longer the pause.

Even under tick-based updates, the view also updates whenever a button in the interface pops up (both once and forever buttons) and when a command entered in the Command Center fin-
ishes. So it's not necessary to add the display command to once buttons that don't advance the tick counter. Many forever buttons that don't advance the tick counter do need to use the dis-
play command. An example in the Models Library is the Life model (under Computer Science - Cellular Automata). The forever buttons that let the user draw in the view use the display com-
mand so the user can see what they are drawing, even though the tick counter is not advancing.

Choosing a mode
Advantages of tick-based updates over continuous updates include:

1. Consistent, predictable view update behavior which does not vary from computer to computer or from run to run.
2. Continuous updates can confuse the user of your model by letting them see model states they aren’t supposed to see, which may be misleading.

3. Since setup buttons don't advance the tick counter, they are unaffected by the speed slider; this is normally the desired behavior.
Nearly every model in our Models Library uses tick-based updates.

Continuous updates are occasionally useful for those rare models in which execution is not divided into short, discrete phases. An example in the Models Library is Termites. (See also, however,
the State Machine Example model, which shows how to re-code Termites using ticks.)

Even for models that would normally be set to tick-based updates, it may be useful to switch to continuous updates temporarily for debugging purposes. Seeing what's going on within a tick,
instead of only seeing the end result of a tick, could help with troubleshooting. After switching to continuous updates, you may want to use the speed slider to slow the model down until you see
your agents moving one at a time. Don't forget to change back to tick-based updates when you are done, as the choice of update mode is saved with the model.

Changing the update mode also affects model speed. Updating the view takes time; often enforcing a single update per tick (by using tick-based updates) will make your model faster. On the
other hand, continuous updates will be faster when running a single tick is faster than drawing a frame of the model. Most models run faster under tick-based updates, but for an example of a
model which is faster with continuous updates see the “Heroes and Cowards" library model.

Frame rate

One of the model settings in NetLogo's “Settings..." dialog is “Frame rate” which defaults to 30 frames per second.
The frame rate setting affects both continuous updates and tick-based updates.

With continuous updates, the setting directly determines the frequency of updates.

With tick-based updates, the setting is a ceiling on how many updates per second you get. If the frame rate is 30, then NetLogo will ensure that the model never runs faster than that when the
speed slider is in the default position. If any frame takes less than 1/30 of a second to compute and display, NetLogo will pause and wait until the full 1/30 of a second has passed before
continuing.

The frame rate settings lets you set what you consider to be a normal speed for your model. Then you, or the user of your model, can use the speed slider to temporarily get a faster or slower
speed.

Topology

The way the world of patches is connected can change. By default the world is a torus which means it isn't bounded, but “wraps"” - so when a turtle moves past the edge of the world, it disap-
pears and reappears on the opposite edge and every patch has the same number of “neighbor” patches. If you're a patch on the edge of the world, some of your “neighbors" are on the oppo-
site edge.

However, you can change the wrap settings with the Settings button. If wrapping is not allowed in a given direction then in that direction (x or y) the world is bounded. Patches along that bound-
ary will have fewer than 8 neighbors and turtles will not move beyond the edge of the world.

The topology of the NetLogo world has four potential values, torus, box, vertical cylinder, or horizontal cylinder. The topology is controlled by enabling or disabling wrapping in the x or y direc-
tions. The default world is a torus.

A torus wraps in both directions, meaning that the top and bottom edges of the world are connected and the left and right edges are connected. So if a turtle moves beyond the right edge of the
world it appears again on the left and the same for the top and bottom.

A box does not wrap in either direction. The world is bounded so turtles that try to move off the edge of the world cannot. Note that the patches around edge of the world have fewer than eight
neighbors; the corners have three and the rest have five.

Horizontal and vertical cylinders wrap in one direction but not the other. A horizontal cylinder wraps vertically, so the top of the world is connected to the bottom. but the left and right edges are
bounded. A vertical cylinder is the opposite; it wraps horizontally so the left and right edges are connected, but the top and bottom edges are bounded.

Code Example: Neighbors Example

When coordinates wrap, turtles and links wrap visually in the view, too. If a turtle shape or link extends past an edge, part of it will appear at the other edge. (Turtles themselves are points that
take up no space, so they cannot be on both sides of the world at once, but in the view, they appear to take up space because they have a shape.)

Wrapping also affects how the view looks when you are following a turtle. On a torus, wherever the turtle goes, you will always see the whole world around it:

2,2)

(11,1) (0,1) (1L,1) (2,1) (72,1)

(-1,0) (0,0) (1,00 (Z,O/I*Z.OF

(1-1) (2,-1) (-2,-1)]

Whereas in a box or cylinder the world has edges, so the areas past those edges show up in the view as gray:

(-1,2) Y (1,2)

0,1 (1,1) \

Code Example: Termites Perspective Demo (torus), Ants Perspective Demo (box)

The topology settings also control the behavior of the distance(xy), in-radius, in-cone, face(xy), and towards(xy) primitives. The topology controls whether the primitives wrap or not. They
always use the shortest path allowed by the topology. For example, the distance from the center of the patches in the bottom left corner (min-pxcor, min-pycor) and the upper right corner (max-
pxcor, max-pycor) will be as follows for each topology given that the min and max pxcor and pycor are +/-2:

« Torus - sqrt(2) ~ 1.414 (this will be the same for all world sizes since the patches are directly diagonal to each other in a torus.)

« Box - sqrt(world-width"2 + world-height*2) ~ 7.07

« Vertical Cylinder - sqrt(world-height*2 + 1) ~ 5.099

« Horizontal Cylinder - sqrt(world-width"2 + 1) ~ 5.099

All the other primitives will act similarly to distance. If you formerly used -nowrap primitives in your model we recommend removing them and changing the topology of the world instead.

If your model has turtles that move around you'll need to think about what happens to them when they reach the edge of the world, if the topology you're using has some non-wrapping edges.
There are a few common options: the turtle is reflected back into the world (either systematically or randomly), the turtle exits the system (dies), or the turtle is hidden. It is no longer necessary
to check the bounds using turtle coordinates, instead we can just ask NetLogo if a turtle is at the edge of the world. There are a couple ways of doing this, the simplest is to use the can-move?
primitive.

if not can-move? distance [rt 180]

can-move? merely returns true if the position distance in front of the turtle is inside the NetLogo world, false otherwise. In this case, if the turtle is at the edge of the world it simple goes back
the way it came. You can also use patch-ahead 1 != nobody in place of can-move? . If you need to do something smarter that simply turning around it may be useful to use patch-at with dx
and dy .

if patch-at dx 0 = nobody [
set heading (- heading)

1

if patch-at 0 dy = nobody [
set heading (180 - heading)

This tests whether the turtle is hitting a horizontal or vertical wall and bounces off that wall.

In some models if a turtle can't move forward it simply dies (exits the system, like in Conductor or Mousetraps).

if not can-move? distance[die]

If you are moving turtles using setxy rather than forward you should test to make sure the patch you are about to move to exists since setxy throws a runtime error if it is given coordinates
outside the world. This is a common situation when the model is simulating an infinite plane and turtles outside the view should simply be hidden.

let new-x new-value-of-xcor
let new-y new-value-of-ycor

ifelse patch-at (new-x - xcor) (new-y - ycor) = nobody
[hide-turtle]
[setxy new-Xx new-y
show-turtle]

Several models in the Models Library use this technique, Gravitation, N-Bodies, and Electrostatics are good examples.

The diffuse and diffuse4 commands behave correctly in all topologies. Each patch diffuses and equal amount of the diffuse variable to each of its neighbors, if it has fewer than 8 neighbors
(or 4 if you are using diffuse4), the remainder stays on the diffusing patch. This means that the overall sum of patch-variable across the world remains constant. However, if you want the dif-
fuse matter to still fall off the edges of the world as it would on an infinite plane you still need to clear the edges each step as in the Diffuse Off Edges Example.

Observer Perspective

The 2D and the 3D view show the world from the perspective of the observer. By default the observer is looking down on the world from the positive z-axis at the origin. You can change the
perspective of the observer by using the follow, ride and watch observer commands and follow-me, ride-me and watch-me turtle commands. watch-me is also a patch or link command.
When in follow or ride mode the observer moves with the subject agent around the world. The difference between follow and ride is only visible in the 3D view. In the 3D view the user can
change the distance behind the agent using the mouse. When the observer is following at zero distance from the agent it is actually riding the agent. When the observer is in watch mode it
tracks the movements of one turtle (or patch or link) without moving. In both views you will see a spotlight appear on the subject and in the 3D view the observer will turn to face the subject. To
determine which agent is the focus you can use the subject reporter. Use the reset-perspective command to stop the observer from watching, following, or riding. In the 3D view, the
observer also returns to its default position (above the origin, looking straight down).

Code Example: Perspective Example

Input/Output

Output

This section is about output to the screen. Output to the screen can also be later saved to a file using the export-output command. If you need a more flexible method of writing data to exter-
nal files, see the next section, File I/O.

The basic commands for generating output to the screen in NetLogo are print, show, type, and write . These commands send their output to the Command Center.
For full details on these four commands, see their entries in the NetLogo Dictionary. Here is how they are typically used:

e print is useful in most situations.

« show lets you see which agent is printing what.

« type lets you print several things on the same line.

« write lets you print values in a format which can be read back in using file-read.

A NetLogo model may optionally have an “output area” in its Interface tab, separate from the Command Center. To send output there instead of the Command Center, use the output-print,
output-show, output-type, and output-write commands.

The output area can be cleared with the clear-output command and saved to a file with export-output . The contents of the output area will be saved by the export-world command. The
import-world command will clear the output area and set its contents to the value in imported world file. It should be noted that large amounts of data being sent to the output area can
increase the size of your exported worlds.

If you use output-print, output-show, output-type, output-write, clear-output, or export-output in a model which does not have a separate output area, then the commands apply to
the output portion of the Command Center.

How Output Primitives Differ
This information is a quick reference for more advanced users.
The print, show, type,and write primitives differ on the following facets:

« What types of values does the primitive accept?
« Does the primitive output a newline at the end?
« Are strings output with quotes surrounding them?

« Does the primitive output the agent which printed it?

The following table summarizes the behavior of each primitive.

Primitive Acceptable values Adds newline? Strings quoted?

print any NetLogo value yes no no
show any NetLogo value yes yes yes
type any NetLogo value no no no
write boolean, number, string, lists containing only these types no yes no

User Interaction Primitives

NetLogo features several primitives which allow a model to interact with the user. These primitives include user-directory, user-file, user-new-file, user-input, user-message, user-one-of, and
user-yes-or-no?.

These primitives differ in precisely what interaction they take with the user. user-directory, user-file, and user-new-file are all reporters which prompt the user to select an item from the
file system and report the path of the selected item to NetLogo. user-yes-or-no?, user-one-of ,and user-input all prompt the user to provide input in the form of text or a selection. user-
message simply presents a message to the user.

Note that all active forever buttons will pause when one of these primitives is used and will resume only when the user completes the interaction with the button.

What does “Halt" mean?

The primitives which prompt the user for input, as well as user-message all provide a “Halt" button. The effect of this button is the same for all of these primitives - it halts the model. When the
model is halted all running code is stopped, including buttons and the command center. Since halting stops code in the middle of whatever it happened to be doing at the time it was halted, you

may see strange results if you continue to run the model after a halt without setting it up again.

Filel/O

In NetLogo, there is a set of primitives that give you the power to interact with outside files. They all begin with the prefix file-.

There are two main modes when dealing with files: reading and writing. The difference is the direction of the flow of data. When you are reading in information from a file, data that is stored in
the file flows into your model. On the other hand, writing allows data to flow out of your model and into a file.

When working with files, always begin by using the primitive file-open . This specifies which file you will be interacting with. None of the other primitives work unless you open a file first.
The next file- primitive you use dictates which mode the file will be in until the file is closed, reading or writing. To switch modes, close and then reopen the file.

The reading primitives include file-read, file-read-line, file-read-characters, and file-at-end?. Note that the file must exist already before you can open it for reading.
Code Examples: File Input Example

The primitives for writing are similar to the primitives that print things in the Command Center, except that the output gets saved to a file. They include file-print, file-show, file-type,
and file-write . Note that you can never “overwrite” data. In other words, if you attempt to write to a file with existing data, all new data will be appended to the end of the file. (If you want to
overwrite a file, use file-delete to delete it, then open it for writing.)

Code Examples: File Output Example

When you are finished using a file, you can use the command file-close to end your session with the file. If you wish to remove the file afterwards, use the primitive file-delete to delete it.
To close multiple opened files, one needs to first select the file by using file-open before closing it.

;3 Open 3 files

file-open "myfilel.txt"
file-open "myfile2.txt"
file-open "myfile3.txt"

;3 Now close the 3 files
file-close
file-open "myfile2.txt"
file-close
file-open "myfilel.txt"
file-close

Or, if you know you just want to close every file, you can use file-close-all.

Two primitives worth noting are file-write and file-read . These primitives are designed to easily save and retrieve NetLogo constants such as numbers, lists, booleans, and strings. file-
write will always output the variable in such a manner that file-read will be able to interpret it correctly.

file-open "myfile.txt" ;; Opening file for writing
ask turtles

[file-write xcor file-write ycor]
file-close

file-open "myfile.txt" ;; Opening file for reading
ask turtles

[setxy file-read file-read]
file-close

Code Examples: File Input Example and File Output Example

Letting the user choose

The user-directory, user-file, and user-new-file primitives are useful when you want the user to choose a file or directory for your code to operate on.

In the simplest models, each variable holds only one piece of information, usually a number or a string. Lists let you store multiple pieces of information in a single value by collecting that infor-

mation in a list. Each value in the list can be any type of value: a number, or a string, an agent or agentset, or even another list.

Lists allow for the convenient packaging of information in NetLogo. If your agents carry out a repetitive calculation on multiple variables, it might be easier to have a list variable, instead of multi-
ple number variables. Several primitives simplify the process of performing the same computation on each value in a list.

The NetLogo Dictionary has a section that lists all of the list-related primitives.
Constant lists

You can make a list by simply putting the values you want in the list between brackets, like this: set mylist [2 4 6 8] . Note that the individual values are separated by spaces. You can make
lists that contain numbers and strings this way, as well as lists within lists, for example [[2 4] [3 5]].

The empty list is written by putting nothing between the brackets, like this: [] .
Building lists on the fly

If you want to make a list in which the values are determined by reporters, as opposed to being a series of constants, use the list reporter. The list reporter accepts two other reporters,
runs them, and reports the results as a list.

If I wanted a list to contain two random values, | might use the following code:

file:///tmp/sbt_f1cee2bd/dictionary.html

set random-list list (random 10) (random 20)

This will set random-1list to a new list of two random integers each time it runs.

To make longer or shorter lists, you can use the list reporter with fewer or more than two inputs, but in order to do so, you must enclose the entire call in parentheses, e.g.:
(list random 10)
(list random 10 random 20 random 30)

For more information, see Varying number of inputs.

Some kinds of lists are most easily built using the n-values reporter, which allows you to construct a list of a specific length by repeatedly running a given reporter. You can make a list of the
same value repeated, or all the numbers in a range, or a lot of random numbers, or many other possibilities. See dictionary entry for details and examples.

The of primitive lets you construct a list from an agentset. It reports a list containing each agent'’s value for the given reporter. (The reporter could be a simple variable name, or a more complex

expression — even a call to a procedure defined using to-report.) A common idiom is

max [...] of turtles
sum [...] of turtles
and so on.

You can combine two or more lists using the sentence reporter, which concatenates lists by combining their contents into a single, larger list. Like list, sentence normally takes two inputs,
but can accept any number of inputs if the call is surrounded by parentheses.

Changing list items

Technically, lists can't be modified, but you can construct new lists based on old lists. If you want the new list to replace the old list, use set . For example:
set mylist [2 7 5 Bob [3 0 -2]]
; mylist is now [2 7 5 Bob [3 0 -2]]

set mylist replace-item 2 mylist 10
; mylist is now [2 7 10 Bob [3 0 -2]]

The replace-item reporter takes three inputs. The first input specifies which item in the list is to be changed. 0 means the first item, 1 means the second item, and so forth.

To add an item, say 42, to the end of a list, use the lput reporter. (fput adds an item to the beginning of a list.)

set mylist lput 42 mylist
; mylist is now [2 7 10 Bob [3 0 -2] 42]

But what if you changed your mind? The but-last (bl for short) reporter reports all the list items but the last.

set mylist but-last mylist
; mylist is now [2 7 10 Bob [3 0 -2]]

Suppose you want to get rid of item O, the 2 at the beginning of the list.

set mylist but-first mylist
; mylist is now [7 10 Bob [3 0 -2]]

Suppose you wanted to change the third item that's nested inside item 3 from -2 to 9? The key is to realize that the name that can be used to call the nested list [3 0 -2] is item 3 mylist. Then
the replace-item reporter can be nested to change the list-within-a-list. The parentheses are added for clarity.

set mylist (replace-item 3 mylist
(replace-item 2 (item 3 mylist) 9))
; mylist is now [7 10 Bob [3 0 9]]
Iterating over lists

If you want to do some operation on each item in a list in turn, the foreach command and the map reporter may be helpful.

foreach is used to run a command or commands on each item in a list. It takes an input list and a command name or block of commands, like this:

foreach [1 2 3] show

=1

= 2

=> 3

foreach [2 4 6]
[n->crtn

show (word "created " n " turtles")]
=> created 2 turtles
=> created 4 turtles
=> created 6 turtles

In the block, the variable n holds the current value from the input list.

Here are some more examples of foreach :

foreach [1 2 3] [steps -> ask turtles [fd steps]]

;3 turtles move forward 6 patches

foreach [true false true true] [should-move? -> ask turtles [if should-move? [fd 11 1]
;3 turtles move forward 3 patches

map is similar to foreach, butitis a reporter. It takes an input list and a reporter name or reporter block. Note that unlike foreach, the reporter comes first, like this:

show map round [1.2 2.2 2.7]
;3 oprints [1 2 3]

map reports a list containing the results of applying the reporter to each item in the input list. Again, use the variable named in the anonymous procedure (x in the examples below) to refer to
the current item in the list.

Here are a couple more examples of map :
show map [x -> x <0] [1-134 -2 -10]
;5 prints [false true false false true true]
show map [x -> x * x] [1 2 3]
;5 prints [1 4 9]
Besides map and foreach, other primitives for processing whole lists in a configurable way include filter, reduce, and sort-by.

These primitives aren't always the solution for every situation in which you want to operate on an entire list. In some situations, you may need to use some other technique such as a loop using
repeat or while, or a recursive procedure.

The blocks of code we're giving to map and foreach in these examples are actually anonymous procedures. Anonymous procedures are explained in more detail in Anonymous procedures,
below.

Varying number of inputs

Some commands and reporters involving lists and strings may take a varying number of inputs. In these cases, in order to pass them a number of inputs other than their default, the primitive
and its inputs must be surrounded by parentheses. Here are some examples:

show list 1 2

=> [1 2]

show (list 1 2 3 4)
=> [12 3 4]

show (list)

=>1[

Note that each of these special primitives has a default number of inputs for which no parentheses are required. The primitives which have this capability are list, word, sentence, map,
foreach, run, and runresult.
Lists of agents

Earlier, we said that agentsets are always in random order, a different random order every time. If you need your agents to do something in a fixed order, you need to make a list of the agents
instead.

There are two primitives that help you do this, sort and sort-by.

Both sort and sort-by can take an agentset as input. The result is always a new list, containing the same agents as the agentset did, but in a particular order.
If you use sort on an agentset of turtles, the result is a list of turtles sorted in ascending order by who number.

If you use sort on an agentset of patches, the result is a list of patches sorted left-to-right, top-to-bottom.

If you use sort on an agentset of links, the result is a list of links, sorted in ascending order first by endl then by end2 any remaining ties are resolved by breed in the order they are declared
in the Code tab.

If you need descending order instead, you can combine reverse with sort, for example reverse sort turtles.
If you want your agents to be ordered by some other criterion than the standard ones sort uses, you'll need to use sort-by instead.

Here's an example:

sort-by [[a b] -> [size] of a < [size] of b] turtles

This returns a list of turtles sorted in ascending order by their turtle variable size.

There's a common pattern to get a list of agents in a random order, using a combination of of and self, in the rare case that you cannot just use ask:

[self] of my-agentset

Asking a list of agents

Once you have a list of agents, you might want to ask them each to do something. To do this, use the foreach and ask commands in combination, like this:

foreach sort turtles [the-turtle ->
ask the-turtle [

This will ask each turtle in ascending order by who number. Substitute “patches” for “turtles” to ask patches in left-to-right, top-to-bottom order.

Note that you can't use ask directly on a list of turtles. ask only works with agentsets and single agents.
Performance of lists

The data structure underlying NetLogo's lists is a sophisticated tree-based data structure on which most operations run in near-constant time. That includes fput, lput, butfirst, butlast,
length, item, and replace-item.

One exception to the fast-performance rule is that concatenating two lists with sentence requires traversing and copying the whole second list. (This may be fixed in a future version.)

Technically, “near-constant time" is actually logarithmic time, proportional to the depth of the underlying tree, but these trees have large nodes and a high branching factor, so they are never
more than a few levels deep. This means that changes can be made in at most a few steps. The trees are immutable, but they share structure with each other, so the whole tree doesn't need to
be copied to make a changed version.

The actual data structure used is the immutable Vector class from the Scala collections library. These are 32-wide hash array mapped tries, as implemented by Tiark Rompf, based in part on
work by Phil Bagwell and Rich Hickey.

Strings may contain any Unicode characters.
To input a constant string in NetLogo, surround it with double quotes.
The empty string is written by putting nothing between the quotes, like this: "" .

Most of the list primitives work on strings as well:

but-first "string" => "tring"
but-last "string" "strin"
empty? => true

empty? "string" => false

first "string" => "s"

item 2 "string"
last "string"
length "string" => 6

member? "s" "string" => true

member? "rin" "string" => true

member? "ron" "string" => false
position "s" "string" => 0

position "rin" "string" => 2

position "ron" "string" => false
remove "r" "string" => "sting"

remove "s" "strings" => "tring"
replace-item 3 "string" "o" => "strong"

reverse "string" => "gnirts"

A few primitives are specific to strings, such as is-string?, substring, and word:

is-string? "string" => true
is-string? 37 => false
substring "string" 2 5 => "rin"
word “tur" "tle" => "turtle"

Strings can be compared using the =, !=, <, >, <=, and >= operators.

If you need to embed a special character in a string, use the following escape sequences:

* \n =newline
¢ \t =tab
+ \" =double quote

* \\ = backslash

Math
All numbers in NetLogo are stored internally as double precision floating point numbers, as defined in the IEEE 754 standard. They are 64 bit numbers consisting of one sign bit, an 11-bit expo-
nent, and a 52-bit mantissa. See the IEEE 754 standard for details.

An “integer” in NetLogo is simply a number that happens to have no fractional part. No distinction is made between 3 and 3.0; they are the same number. (This is the same as how most people
use numbers in everyday contexts, but different from some programming languages. Some languages treat integers and floating point numbers as distinct types.)

Integers are always printed by NetLogo without the trailing “.0":

show 1.5 + 1.5
observer: 3

If a number with a fractional part is supplied in a context where an integer is expected, the fractional part is simply discarded. So for example, crt 3.5 creates three turtles; the extra 0.5 is
ignored.

The range of integers is +/-9007199254740992 (2”53, about 9 quadrillion). Calculations that exceed this range will not cause runtime errors, but precision will be lost when the least significant
(binary) digits are rounded off in order fit the number into 64 bits. With very large numbers, this rounding can result in imprecise answers which may be surprising:

https://en.wikipedia.org/wiki/Hash_array_mapped_trie

show 2 ~ 60 + 1 =2 ~ 60
=> true

Calculations with smaller numbers can also produce surprising results if they involve fractional quantities, since not all fractions can be precisely represented and roundoff may occur. For
example:

showl/6+1/6+1/6+1/6+1/6+1/6

=> 0.9999999999999999
showl/9+1/9+1/9+1/9+1/9+1/9+1/9+1/9+1/9
=> 1.0000000000000002

Any operation which produces the special quantities “infinity” or “not a number” will cause a runtime error.
Scientific notation

Very large or very small floating point numbers are displayed by NetLogo using “scientific notation”. Examples:

show 0.000000000001

=> 1.0E-12

show 50000000000000000000
=> 5.0E19

Numbers in scientific notation are distinguished by the presence of the letter E (for “exponent”). It means “times ten to the power of", so for example, 1.0E-12 means 1.0 times 10 to the -12

power:

show 1.0 * 10 ~ -12
=> 1.0E-12

You can also use scientific notation yourself in NetLogo code:

show 3.0E6

=> 3000000

show 8.123456789E6
=> 8123456.789
show 8.123456789E7
=> 8.123456789E7
show 3.0E16

=> 3.0E16

show 8.0E-3

=> 0.0080

show 8.0E-4

=> 8.0E-4

These examples show that numbers with fractional parts are displayed using scientific notation if the exponent is less than -3 or greater than 6. Numbers outside of NetLogo's integer range of
-9007199254740992 to 9007199254740992 (+/-2"53) are also always shown in scientific notation:

show 2 ~ 60
=> 1.15292150460684698E18

When entering a number, the letter E may be either upper or lowercase. When printing a number, NetLogo always uses an uppercase E:

show 4.5e20
=> 4.5E20

Floating point accuracy

Because numbers in NetLogo are subject to the limitations of how floating point numbers are represented in binary, you may get answers that are slightly inaccurate. For example:

show 0.1 + 0.1 + 0.1

=> 0.30000000000000004
show cos 90

=> 6.123233995736766E-17

This is an inherent issue with floating point arithmetic; it occurs in all programming languages that use floating point numbers.

If you are dealing with fixed precision quantities, for example dollars and cents, a common technique is to use only integers (cents) internally, then divide by 100 to get a result in dollars for
display.

If you must use floating point numbers, then in some situations you may need to replace a straightforward equality test suchas if x = 1 [...] with atest that tolerates slight imprecision,
for example if abs (x - 1) < 0.0001 [...].

Also, the precision primitive is handy for rounding off numbers for display purposes. NetLogo monitors round the numbers they display to a configurable number of decimal places, too.

Random numbers

The random numbers used by NetLogo are what is called “pseudo-random”. (This is typical in computer programming.) That means they appear random, but are in fact generated by a determin-
istic process. “Deterministic” means that you get the same results every time, if you start with the same random "“seed". We'll explain in a minute what we mean by “seed".

In the context of scientific modeling, pseudo-random numbers are actually desirable. That's because it's important that a scientific experiment be reproducible - so anyone can try it themselves
and get the same result that you got. Since NetLogo uses pseudo-random numbers, the “experiments” that you do with it can be reproduced by others.

Here's how it works. NetLogo's random number generator can be started with a certain seed value, which must be an integer in the range -2147483648 to 2147483647. Once the generator has
been “seeded” with the random-seed command, it always generates the same sequence of random numbers from then on. For example, if you run these commands:

random-seed 137
show random 1600
show random 100
show random 100

You will always get the numbers 79, 89, and 61 in that order.

Note, however, that you're only guaranteed to get those same numbers if you're using the same version of NetLogo. Sometimes when we make a new version of NetLogo the random number
generator changes. (Presently, we use a generator known as the Mersenne Twister.)

To create a number suitable for seeding the random number generator, use the new-seed reporter. new-seed creates a seed, evenly distributed over the space of possible seeds, based on the
current date and time. It never reports the same seed twice in a row.

Code Example: Random Seed Example

If you don't set the random seed yourself, NetLogo sets it to a value based on the current date and time. There is no way to find out what random seed it chose, so if you want your model run to
be reproducible, you must set the random seed yourself ahead of time.

The NetLogo primitives with “random” in their names (random, random-float, and so on) aren’t the only ones that use pseudo-random numbers. Many other operations also make random
choices. For example, agentsets are always in random order, one-of and n-of choose agents randomly, the sprout command creates turtles with random colors and headings, and the down-
hill reporter chooses a random patch when there’s a tie. All of these random choices are governed by the random seed as well, so model runs can be reproducible.

In addition to the uniformly distributed random integers and floating point numbers generated by random and random-float, NetLogo also offers several other random distributions. See the

dictionary entries for random-normal, rand isson, rand tial, and random-g

Auxiliary generator
Code run by buttons or from the command center uses the main random number generator.

Code in monitors uses an auxiliary random generator, so even if a monitor does a calculation that uses random numbers, the outcome of the model is not affected. The same is true of code in
sliders.

Local randomness

You may want to explicitly specify that a section of code does not affect the state of the main random generator, so the outcome of the model is not affected. The with-local-randomness com-
mand is provided for this purpose. See its entry in the NetLogo Dictionary for more information.

Saving a Random Seed for a Run

If you want to know what the random seed used by a “run” of a model was, you can add some simple code to track it. Then if an interesting behavior emerges or an intermittent error condition
occurs, you have a way to reproduce the run by grabbing the seed and re-using it.

Add a starting-seed global variable, then use new-seed to give it a value after you use clear-all inyour setup procedure. Then give that value to the random-seed command so it will be
used for the rest of the run.

globals [starting-seed]

to setup
clear-all
set starting-seed new-seed
random-seed starting-seed
; ... rest of normal setup code
end

to go
; ... the rest of normal model code will use the random seed set in ‘setup’
end

You can then add a monitor for the starting-seed global or simply output it to the command center whenever you want to know its value. If you are using BehaviorSpace to run experiments,
you can also include it in the output to be able to later reproduce runs that it generates.

NetLogo's plotting features let you create plots to help you understand what's going on in your model.

Most plots can be created by creating and editing plot widgets in the Interface tab, as described in its Plots Section. However it is possible to control plots from procedures, although you need
to create them in the Interface tab first.

Plotting points
The two basic commands for actually plotting things are plot and plotxy .

With plot you need only specify the y value you want plotted. The x value will automatically be O for the first point you plot, 1 for the second, and so on. (That's if the plot pen’s “interval” is the
default value of 1; you can change the interval.)

The plot command is especially handy when you want your model to plot a new point at every time step. Example:

plot count turtles

If you need to specify both the x and y values of the point you want plotted, then use plotxy instead. This example assumes that a global variable called time exists:

plotxy time count-turtles

Plot commands

Each plot and its pens have setup and update code fields that may contain commands (usually containing plot or plotxy). These commands are run automatically triggered by other com-
mands in NetLogo.

Plot setup commands and pen setup commands are run when the either reset-ticks or setup-plots commands are run. If the stop command is run in the body of the plot setup commands
then the pen setup commands will not run.

Plot update commands and pen update commands are run when the either reset-ticks, tick or update-plots commands are run. If the stop command is run in the body of the plot update
commands then the pen update commands will not run.

Here are the four commands that trigger plotting explained in more detail.

« setup-plots executes commands for one plot at a time. For each plot, the plot's setup commands are executed. If the stop command is not encountered while running those commands, then
each of the plot's pens will have their setup code executed.

« update-plots is very similar to setup-plots . For each plot, the plot's update commands are executed. If the stop command is not encountered while running those commands, then each of
the plot's pens will have their update code executed.

« tick is exactly the same as update-plots except that the tick counter is incremented before the plot commands are executed.

« reset-ticks first resets the tick counter to 0, and then does the equivalent of setup-plots followed by update-plots.

A typical model will use reset-ticks and tick like so:

to setup
clear-all

reset-ticks
end

to go
tick
end

Note that in this example we plot from both the setup and go procedures (because reset-ticks runs plot setup and plot update commands). We do this because we want our plot to include
the initial state of the system at the end of setup . We plot at the end of the go procedure, not the beginning, because we want the plot always to be up to date after the go button stops.

Models that don't use ticks but still want to do plotting will instead use setup-plots and update-plots. Inthe previous code, replace reset-ticks with setup-plots update-plots and
replace tick with update-plots .

Code Example: Plotting Example

Other kinds of plots
By default, NetLogo plot pens plot in line mode, so that the points you plot are connected by a line.

If you want to move the pen without plotting, you can use the plot-pen-up command. After this command is issued, the plot and plotxy commands move the pen but do not actually draw
anything. Once the pen is where you want it, use plot-pen-down to put the pen back down.

If you want to plot individual points instead of lines, or you want to draw bars instead of lines or points, you need to change the plot pen's “mode”. Three modes are available: line, bar, and point.
Line is the default mode.

Normally, you change a pen’s mode by editing the plot. This changes the pen’s default mode. It's also possible to change the pen’s mode temporarily using the set-plot-pen-mode command.
That command takes a number as input: O for line, 1 for bar, 2 for point.

Histograms
A histogram is a special kind of plot that measures how frequently certain values, or values in certain ranges, occur in a collection of numbers that arise in your model.

For example, suppose the turtles in your model have an age variable. You could create a histogram of the distribution of ages among your turtles with the histogram command, like this:
histogram [age] of turtles

The numbers you want to histogram don't have to come from an agentset; they could be any list of numbers.

Note that using the histogram command doesn't automatically switch the current plot pen to bar mode. If you want bars, you have to set the plot pen to bar mode yourself. (As we said before,
you can change a pen's default mode by editing the plot in the Interface tab.)

Like other types of plots, histograms can be set to auto scale. However, auto scaled histograms do not automatically resize themselves horizontally like other plot types do. To set the range pro-
grammatically, you can use the set-plot-x-range primitive.

The width of the bars in a histogram is controlled by the plot pen's interval. You can set a plot pen's default interval by editing the plot in the Interface tab. You can also change the interval tem-
porarily with the set-plot-pen-interval command or the set-histogram-num-bars . If you use the latter command, NetLogo will set the interval appropriately so as to fit the specified number
of bars within the plot's current x range.

Code Example: Histogram Example
Clearing and resetting

You can clear the current plot with the clear-plot command, or clear every plot in your model with clear-all-plots. The clear-all command also clears all plots, in addition to clearing
everything else in your model.

If you want to remove only the points that a particular pen has drawn, use plot-pen-reset .

When a whole plot is cleared, or when a pen is reset, that doesn't just remove the data that has been plotted. It also restores the plot or pen to its default settings, as they were specified in the
Interface tab when the plot was created or last edited. Therefore, the effects of such commands as set-plot-background-color, set-plot-x-range and set-plot-pen-color are only
temporary.

Ranges and auto scaling
The default x and y ranges for a plot are fixed numbers, but they can be changed at setup time or as the model runs.

To change the ranges at any time, use set-plot-x-range and set-plot-y-range. Or, you can let the ranges grow automatically. Either way, when the plot is cleared the ranges will return to
their default values.

By default, all NetLogo plots have the auto scaling feature enabled. This means that if the model tries to plot a point which is outside the current displayed range, the range of the plot will grow
along one or both axes so that the new point is visible. Histogram plots, however, do not auto scale horizontally.

In the hope that the ranges won't have to change every time a new point is added, when the ranges grow they leave some extra room: 25% if growing horizontally, 10% if growing vertically.

If you want to turn off this feature, edit the plot and uncheck the “Auto Scale?” checkbox. At present, it is not possible to enable or disable this feature only on one axis; it always applies to both
axes.

Using a Legend

You can show the legend of a plot by checking the “Show legend” checkbox in the edit dialog. If you don't want a particular pen to show up in the legend you can uncheck the “Show in Legend”
checkbox for that pen also in the advanced plot pen settings (the advanced plot pen settings can be opened by clicking the pencil button for that pen in the plot pens table in the plot edit
dialog).

Temporary plot pens

Most plots can get along with a fixed number of pens. But some plots have more complex needs; they may need to have the number of pens vary depending on conditions. In such cases, you
can make “temporary” plot pens from code and then plot with them. These pens are called “temporary” because they vanish when the plot is cleared (by the clear-plot, clear-all-plots, or
clear-all commands).

To create a temporary plot pen, use the create-temporary-plot-pen command. Typically, this would be done in the Code tab, but it is also possible to use this command from plot setup or plot
update code (in the edit dialog). By default, the new pen is down, is black in color, has an interval of 1, and plots in line mode. Commands are available to change all of these settings; see the
Plotting section of the NetLogo Dictionary.

Before you can use the pen, you'll have to use the use the set-current-plot and set-current-plot-pen commands. These are explained in the next section.

set-current-plot and set-current-plot-pen

Before NetLogo 5, it was not possible to put plot commands in the plot itself. All of the plot code was written in the Code tab with the rest of the code. For backwards compatibility, and for tem-
porary plot pens, this is still supported. Models in previous versions of NetLogo (and those using temporary plot pens) have to explicitly state which plot is the current plot with the set-cur-
rent-plot command and which pen is the current pen with the set-current-plot-pen command.

To set the current plot use the set-current-plot command with the name of the plot enclosed in double quotes, like this:
set-current-plot "Distance vs. Time"
The name of the plot must be exactly as you typed it when you created the plot. Note that later if you change the name of the plot, you'll also have to update the set-current-plot calls in your

model to use the new name. (Copy and paste can be helpful here.)

For a plot with multiple pens, you can manually specify which pen you want to plot with. If you don't specify a pen, plotting will take place with the first pen in the plot. To plot with a different
pen, the set-current-plot-pen command was used with the name of the pen enclosed in double quotes, like this:

set-current-plot-pen "distance"

Once the current pen is set, then commands like plot count turtles can be executed for that pen.
Older models with plots usually had their own do-plotting procedure that looked something like this:
to do-plotting

set-current-plot "populations"

set-current-plot-pen "sheep"

plot count sheep

set-current-plot-pen "wolves"

plot count wolves

set-current-plot "next plot"

end

Once again, this is no longer necessary in NetLogo 5, unless you are using temporary plot pens.
Conclusion

Not every aspect of NetLogo's plotting system has been explained here. See the Plotting section of the NetLogo Dictionary for information on additional commands and reporters related to
plotting.

Many of the Sample Models in the Models Library illustrate various advanced plotting techniques. Also check out the following code examples:

Code Examples: Plot Axis Example, Plot Smoothing Example, Rolling Plot Example

Color

NetLogo represents colors in different ways. A color can be number in the range 0 to 140, with the exception of 140 itself. Below is a chart showing the range of such NetLogo colors.

black = 0 white = 9.9

gray =5 9 99
red = 15 19 199
orange = 25 29 299
brown = 35 39 399
yellow = 45 49 499
green = 55 59 599
lime = 65 69 69.9
turquoise = 75 79 799
ojan = 85 89 899

sky = 95 9% 999

blue = 105 109 109.9
violet = 115 19 1199
magenta = 125 120 1299
pink = 135 139 1399

The chart shows that:

« Some of the colors have names. (You can use these names in your code.)

« Every named color except black and white has a number ending in 5.

« On either side of each named color are darker and lighter shades of the color.
« 0is pure black. 9.9 is pure white.

« 10, 20, and so on are all so dark they are very nearly black.

« 19.9, 29.9 and so on are all so light they are very nearly white.

Code Example: The color chart was made in NetLogo with the Color Chart Example model.

If you use a number outside the 0 to 140 range, NetLogo will repeatedly add or subtract 140 from the number until it is in the O to 140 range. For example, 25 is orange, so 165, 305, 445, and so
on are orange too, and so are -115, -255, -395, etc. This calculation is done automatically whenever you set the turtle variable color or the patch variable pcolor . Should you need to perform
this calculation in some other context, use the wrap-color primitive.

If you want a color that's not on the chart, more exist between the integers. For example, 26.5 is a shade of orange halfway between 26 and 27. This doesn’t mean you can make any color in
NetLogo; the NetLogo color space is only a subset of all possible colors. It contains only a fixed set of discrete hues (one hue per row of the chart). Starting from one of those hues, you can
either decrease its brightness (darken it) or decrease its saturation (lighten it), but you cannot decrease both brightness and saturation. Also, only the first digit after the decimal point is signifi-
cant. Thus, color values are rounded down to the next 0.1, so for example, there's no visible difference between 26.5 and 26.52 or 26.58.

Color primitives

There are a few primitives that are helpful for working with colors.

We have already mentioned the wrap-color primitive.

The scale-color primitive is useful for converting numeric data into colors.

shade-of? will tell you if two colors are both “shades” of the same basic hue. For example, shade-of? orange 27 is true, because 27 is a lighter shade of orange.

See the color section of the NetLogo Dictionary for a full list of color commands.

Code Example: Scale-color Example demonstrates the scale-color reporter.

RGB and RGBA Colors

NetLogo also represents colors as RGB (red/green/blue) lists and RGBA (red/green/blue/alpha) lists. When using RGB colors the full range of colors is available to you. RGBA colors allow all the
colors that RGB allows and you can also vary the transparency of a color. RGB and RGBA lists are made up of three or four integers, respectively, between 0 and 255. You can set any color vari-
ables in NetLogo (color for turtles and links and pcolor for patches) to an RGB list and that agent will be rendered appropriately. So you can set the color of patch 0 0 to pure red using the
following code:

set pcolor [255 0 0]

Turtles, links, and labels can all contain RGBA lists as their color variables. Patches only use the alpha value of an RGBA pcolors in NetLogo 3D, it's ignored in 2D NetLogo. You can set the
color of a turtle to be approximately half transparent pure red with the following code:

set color [255 0 0 125]

Note that decimal values will be rounded towards 0 before the range is checked. An error will be thrown if a value is outside the range 0-255 after this rounding.

You can convert from a NetLogo color to RGB or HSB (hue/saturation/brightness) using extract-hsb and extract-rgh.You can use rgb to generate rgb lists and hsb to convert from an HSB
color to RGB.

Since many colors are missing from the NetLogo color space, approximate-hsb and approximate-rgb often can't give you the exact color you ask for, but they try to come as close as
possible.

Example:

let my-color approximate-rgb © 0 255 ;; my-color is now 104.7
show extract-rgb my-color ;; shows [48 88 161] which is pretty far from [0 © 255], the color we started with

This is an approximation, but it is still near NetLogo blue which is 105.

Using RGBA colors, the user has more options when it comes to an agent's color.

Example: you can change any turtle from its existing NetLogo color to a sixty percent transparent version of that color using:
ask one-of turtles [set color lput 102 extract-rgb color]

Note: because 255 is fully opaque and sixty percent transparent is equal to forty percent opaque, the correct alpha value is 255 * .4 = 102. See the palette extension section below for an alter-
nate implementation.

Code Examples: HSB and RGB Example (lets you experiment with the HSB and RGB color systems), Transparency Example

Palette Extension
The palette extension offers primitives that give the user more control over colors. It allows for direct manipulation of RGBA and HSB components without the requiring list manipulations.
Example: changing the transparency of any turtle to sixty percent transparent with the palette extension:

extensions [palette]

ask one-of turtles [palette:set-transparency 60]

The extension offers similar commands for Red, Green, Blue, Alpha, Hue, Saturation, and Brightness.

See the documentation of the palette extension for more information.
Code Examples: Palette Example, Color Bubbles, Color Painting, Color Reveal

Color Picker dialog

The Color Picker dialog helps you experiment with and choose colors. Open it by choosing Color Picker on the Tools Menu.

Movies

This section describes how to capture an “.mp4" movie of a NetLogo model.
First, use the vid:start-recorder command to start the video recorder.

To add a frame to your movie, use either vid:record-view or vid:record-interface, depending on whether you want the movie to show just the current view, or the entire Interface tab. In a
single movie, the resolution will be one of the following:

« The resolution specified in the call to vid:start-recorder width height if you specified the resolution. These are optional parameters.

« The resolution of the view if you did not specify a resolution in the call to vid:start-recorder and call vid:record-view before calling vid:record-interface

« The resolution of the interface if you did not specify a resolution in the call to vid:start-recorder and call vid:record-interface before calling vid:record-view
Note that if the resolution of a recorded image doesn’t match the resolution of the recording it will be scaled to fit which can result in images which look blurry or out-of-focus.

When you're done adding frames, use vid:save-recording . The filename you provide should end with .mp4 , the extension for MP4-encoded movies (playable in QuickTime and other
programs).

;3 export a 30 frame movie of the view
extensions [vid]

setup
vid:start-recorder
vid:record-view ;; show the initial state
repeat 30
[go
vid:record-view]
vid:save-recording "out.mp4"

A movie will play back at 25 frames per second. To make the movie playback faster or slower, consider using a video postprocessing tool.

To check whether or not you are recording, call vid:recorder-status, which reports a string that describes the state of the current recorder.

To throw away the movie currently being recorded, call vid:reset-recorder .
Code Example: Movie Example

Movies generated when running headless, or by background runs in a parallel BehaviorSpace experiment may use only vid:record-view primitive. Movies generated in NetLogo GUI may also

use vid:record-interface and vid:record-source.
NetLogo movies are exported as H.264-encoded MP4 files. To play an MP4 movie, you can use the VLC Player, a free download from the VideoLAN organization.

Movies can take up a lot of disk space. You will probably want to compress your movies with third-party software. The software may give you a choice of different kinds of compression. Some
kinds of compression are lossless, while others are lossy. “Lossy"” means that in order to make the files smaller, some of the detail in the movie is lost. Depending on the nature of your model,
you may want to avoid using lossy compression, for example if the view contains fine pixel-level detail.

file:///tmp/sbt_f1cee2bd/palette.html
file:///tmp/sbt_f1cee2bd/colorpicker.html
http://www.videolan.org/vlc/index.html

	The NetLogo 7.0.0 User Manual
	Table of Contents
	What is NetLogo?
	Features

	Copyright and License Information
	How to reference
	Acknowledgments
	NetLogo license
	Commercial licenses
	NetLogo User Manual license
	Open source
	Third party licenses
	Scala
	MersenneTwisterFast
	Colt
	Config
	Apache Commons Codec (TM)
	Flexmark
	JHotDraw
	JOGL
	Matrix3D
	ASM
	PicoContainer
	Parboiled
	RSyntaxTextArea
	JCodec
	Java-Objective-C Bridge
	Webcam-capture
	Guava
	Gephi
	JSSC
	Apache Commons CSV
	JTS Topology Suite
	Apache Commons HTTPClient
	Apache Commons Logging
	ng-units
	Tinfour
	json-simple
	hid4java
	JAMA
	Gson

	What's new?
	Version 7.0.0 (September 2025)
	Changes in NetLogo Functionality
	Changes to the NetLogo GUI
	Changes to the NetLogo File format
	Changes in Primitive Functionality
	Changes for Customizability
	Features and Enhancements
	Language Changes
	Bug Fixes and Minor Changes
	Extension Updates
	Documentation Updates
	Models Library Changes
	New Sample Models:
	New 3D Sample Models
	New Code Examples
	Sample Model Changes

	Version 6.4.0 (November 2023)
	BehaviorSpace New Features
	Language Changes
	Bug Fixes and Changes
	BehaviorSpace Bug fixes and changes

	Extension Updates
	Documentation Updates
	Models Library Changes
	New Sample Models:
	Sample Model Changes

	Version 6.3.0 (September 2022)
	Bug Fixes and Changes
	Extension Updates
	Documentation Updates
	Models Library Changes
	New Sample Models:
	New Curricular Models:
	New Code Examples:
	Sample Model Changes
	Curricular Models Changes:
	Newly Verified Models

	Version 6.2.2 (December 2021)
	Fixes and Changes

	Version 6.2.1 (October 2021)
	Features and Changes
	Documentation Updates
	Bugfixes
	Models Library Changes
	New Sample Models:
	New Curricula Models:
	New Code Examples:
	Sample Models
	Code Examples

	Version 6.2.0 (December 2020)
	Features
	Bugfixes
	Logging Improvements
	NetLogo 3D Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes
	New Sample Models:
	New Curricular Models:
	New Code Examples:
	Sample Model Updates:

	Alternative Visualization Updates:
	Curricular Model Updates:
	Code Examples Updates:
	HubNet Activities Updates:
	IABM Model Updates:

	Version 6.1.1 (September 2019)
	Bugfixes
	Features
	Extension Changes
	Documentation Changes
	Model Changes

	Version 6.1.0 (May 2019)
	Feature Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes

	Version 6.0.4 (June 2018)
	Feature Changes
	Bugfixes
	Documentation Changes
	Model Changes
	New Curricular Models
	Revised Sample Models
	Revised Code Examples
	Revised Curricular Models
	Revised Alternative Visualizations

	Version 6.0.3 (March 2018)
	Feature Changes
	Documentation Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes
	New Sample Models:
	New Curricular Models
	New HubNet Activities:
	Revised Code Examples:
	Revised Curricular Models:
	Revised Sample Models:
	Revised IABM Models:
	† - Models Updated to Correctly Reference the HIV Model

	Version 6.0.2 (August 2017)
	Feature Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes
	New Sample Models:
	New Curricular Models:
	Revised Sample Models:
	Revised Curricular Models:
	Revised HubNet Activities:
	Revised Code Examples:

	Version 6.0.1 (March 2017)
	Feature Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Models
	New Sample Model
	New Curricular Model
	Revised Sample Models
	Revised Curricular Models

	Version 6.0 (December 2016)
	Feature Changes
	Bugfixes
	Language Changes
	Extension Changes
	Operating System Support
	Documentation Changes
	Internationalization Changes
	Models
	New Sample Models:
	New Curricular Models:
	New Code Examples:
	Promoted Models (improved and no longer “unverified”):
	Revised Sample Models:
	Revised HubNet Activities:
	Revised Curricular Models:
	Revised IABM models:
	Revised Code Examples:
	Demoted model:

	Version 5.3.1 (February 2016)
	Feature Changes
	Extension Changes
	Bugfixes

	Version 5.3 (December 2015)
	Feature Changes
	Extension Changes

	Version 5.2.1 (September 2015)
	Extensions
	New features
	Bug fixes
	Model changes

	Version 5.2.0 (April 2015)
	Extensions
	New features
	Bug fixes
	Model changes

	Version 5.1.0 (July 2014)
	Version 5.0.4 (March 2013)
	Version 5.0 (February 2012)
	Version 4.1.3 (April 2011)
	Version 4.1 (December 2009)
	Version 4.0 (September 2007)
	Version 3.1 (April 2006)
	Version 3.0 (September 2005)
	Version 2.1 (December 2004)
	Version 2.0.2 (August 2004)
	Version 2.0 (December 2003)
	Version 1.3 (June 2003)
	Version 1.2 (March 2003)
	Version 1.1 (July 2002)
	Version 1.0 (April 2002)

	System Requirements
	Application Requirements
	Windows
	Mac OS X
	Linux

	3D Requirements
	32-bit or 64-bit?

	Contact Us
	Web site
	Feedback, questions, etc.
	Reporting bugs
	Open source

	Sample Model: Party
	At a Party
	Challenge
	Thinking with models
	What’s next?

	Tutorial #1: Models
	Sample Model: Wolf Sheep Predation
	Controlling the Model: Buttons
	Controlling speed: Speed Slider
	Adjusting Settings: Choosers, Sliders, and Switches
	Gathering Information: Plots and Monitors
	Plots
	Monitors

	Controlling the View
	Models Library
	Sample Models
	Curricular Models
	Code Examples
	HubNet Activities

	What’s Next?

	Tutorial #2: Commands
	Sample Model: Traffic Basic
	Command Center
	Working with colors
	Agent Monitors and Agent Commanders
	What’s Next?

	Tutorial #3: Procedures
	Agents and procedures
	Making the setup button
	Switching to tick-based view updates
	Making the go button
	Experimenting with commands
	Patches and variables
	Turtle variables
	Monitors
	Switches and labels
	More procedures
	Plotting
	Tick counter
	Some more details
	What’s next?
	Appendix: Complete code

	Interface Guide
	Menus
	Chart: NetLogo menus

	Tabs
	International Usage
	Character sets
	Languages
	Default language

	Support for translators

	Interface Tab Guide
	Overview: Working with interface elements (widgets)
	Charts: Interface Widgets
	Widget Appearance: Light and Dark Themes
	Widget Icons and Functionality

	Other Interface Toolbar controls
	Interface Menus
	Add Widgets Menu
	Align Widgets Menu
	Aligning
	Distributing
	Stretching
	Widget Overlap

	Interface Tools
	Interaction Tool
	Right-clicking
	Ctrl-clicking or Cmd-clicking
	Drag Select
	Exiting

	Selection, Editing and Deletion Tools
	Selection Tool
	Selecting
	Selecting multiple items
	Deselecting
	Moving
	Resizing

	Editing Tool
	Deletion Tool
	Deleting

	The 2D and 3D views
	World Settings
	View Settings
	Tick Counter Settings
	Interacting with Agents
	Manipulating the 3D View
	Fullscreen Mode
	3D Shapes

	Command Center
	Reporters
	Accessing previous commands
	Clearing
	Arranging

	Plots
	Plot Pens
	Plot Pen Advanced Settings

	Agent Monitors

	Info Tab
	Editing
	Headings
	Input

	Paragraphs
	Example
	Formatted

	Italicized and bold text
	Example
	Formatted

	Ordered lists
	Example
	Formatted

	Unordered lists
	Example
	Formatted

	Links
	Automatic links
	Example
	Formatted

	Links with text
	Example
	Formatted

	Local links
	Example
	Example

	Images
	Example
	Formatted
	Local images
	Example
	Formatted

	Bundled images

	Block quotations
	Example
	Formatted

	Code
	Example
	Formatted

	Code blocks
	Example
	Formatted

	Superscripts and subscripts
	Example
	Formatted

	Notes on usage
	Other features

	Code Tab Guide
	Code Tab Toolbar
	Procedures menu

	Checking for Errors
	Separate Code tab
	Find & Replace
	Automatic Indentation
	Line Numbers
	More Editing Options
	Included Files

	Programming Guide
	Agents and Agentsets
	Agents
	Agentsets
	Special agentsets
	Agentsets and lists

	Breeds
	Link breeds

	Variables
	Links
	Tie
	Drawing
	Turtle shapes
	Link shapes

	Programming
	Procedures
	Ask
	Ask-Concurrent
	Syntax
	Colors
	Notice
	Keywords
	Identifiers
	Scope
	Comments
	Structure
	Commands and reporters
	Compared to other Logos
	Surface differences
	Deeper differences

	Multiple source files
	Buttons
	Anonymous procedures
	Anonymous procedure primitives
	Anonymous procedure inputs
	Anonymous procedures and strings
	Concise syntax
	Anonymous procedures as closures
	Nonlocal exits
	Anonymous procedures and extensions
	Limitations
	What is Optional?
	Code example

	World
	Tick counter
	When to tick
	Fractional ticks

	View updates
	Continuous updates
	Tick-based updates
	Choosing a mode
	Frame rate

	Topology

	Observer Perspective
	Input/Output
	Output
	How Output Primitives Differ
	User Interaction Primitives
	What does “Halt” mean?

	File I/O

	Lists
	Strings
	Mathematics
	Math
	Random numbers
	Auxiliary generator
	Local randomness
	Saving a Random Seed for a Run

	Plotting
	Plotting points
	Plot commands
	Other kinds of plots
	Histograms
	Clearing and resetting
	Ranges and auto scaling
	Using a Legend
	Temporary plot pens
	set-current-plot and set-current-plot-pen
	Conclusion

	Color
	Movies

	Transition Guide
	Changes for NetLogo 7.0.0
	Changes for NetLogo 6.1.0
	CF Extension Removal
	ifelse-value Precedence Change with Infix Operators

	Changes for NetLogo 6.0.3
	Arduino Extension Changes
	CF Extension Changes

	Changes for NetLogo 6.0
	Tasks replaced by Anonymous Procedures
	Link reporters overhauled to be more consistent and flexible
	New link reporter behavior
	Old link reporter behavior

	Removal of Applets
	Changes to the NetLogo User Interface
	Nobody Not Permitted as a Chooser Value
	Breeds must have singular and plural names
	Removal of “Movie” Prims
	Improved Name Collision Detection
	Removal of hubnet-set-client-interface
	Improved & Updated Extensions API
	Add range primitive

	Changes for NetLogo 5.2
	hsb primitives
	GoGo extension

	Changes for NetLogo 5.0
	Plotting
	Tick counter
	reset-ticks
	reset-ticks and plotting
	__clear-all-and-reset-ticks

	Unicode characters
	Info tabs
	Model speed
	List performance
	Extensions API
	Syntax constants
	LogoList construction
	Primitive classes

	Changes for NetLogo 4.1
	Combining set and of

	Changes for NetLogo 4.0
	Who numbering
	Turtle creation: randomized vs. “ordered”
	Adding strings and lists
	The -at primitives
	Links
	New “of” syntax
	Serial ask
	Tick counter
	View update modes
	How to make a model use ticks and tick-based updates

	Speed slider
	Numbers
	Agentset building
	RGB Colors
	Tie

	Changes for NetLogo 3.1
	Agentsets
	Wrapping
	Random turtle coordinates

	Extension Manager Guide
	Authoring and Sharing
	Interface

	Shapes Editor Guide
	Getting started
	Importing shapes

	Creating and editing turtle shapes
	Tools
	Previews
	Overlapping shapes
	Undo
	Colors
	Other buttons
	Shape design
	Keeping a shape

	Creating and editing link shapes
	Changing link shape properties

	Using shapes in a model

	BehaviorSpace Guide
	What is BehaviorSpace?
	Why BehaviorSpace?

	How It Works
	Managing experiment setups
	Creating an experiment setup
	Combinatorial syntaxes
	Subexperiment syntax
	Run metrics when
	Pre experiment commands
	Post experiment commands

	Importing and exporting
	Special primitives for BehaviorSpace experiments
	Running an experiment
	Run options: formats
	Table output
	Spreadsheet output
	Statistics output
	Lists output
	Output File Changes
	Run options: update plots and monitors
	Run options: parallel runs
	Observing runs
	Paused experiments

	Advanced Usage
	Running from the command line
	How to use it
	Examples

	Setting up experiments in XML
	Adjusting JVM Parameters
	Bspace Extension
	Controlling API

	System Dynamics Guide
	What is the NetLogo System Dynamics Modeler?
	Basic Concepts
	Sample Models

	How it Works
	Diagram Tab
	Creating Diagram Elements
	Working with Diagram Elements
	Editing dt
	Errors

	Code Tab
	The System Dynamics Modeler and NetLogo

	Tutorial: Wolf-Sheep Predation
	Step 1: Sheep Reproduction
	Step 2: NetLogo Integration
	Step 3: Wolf Predation

	HubNet Guide
	Understanding HubNet
	NetLogo
	HubNet Architecture

	Computer HubNet
	Activities
	Clients
	Requirements
	Starting an activity
	HubNet Control Center
	Troubleshooting
	I started a HubNet activity, but when participants open a HubNet Client, my activity isn’t listed.
	When a participant tries to connect to an activity, nothing happens (the client appears to hang or gives an error saying that no serverwas found).
	The view on the HubNet client is gray.
	There is no view on the HubNet client.
	I can’t quit a HubNet client.
	My computer went to sleep while running a HubNet activity. When I woke the computer up, I got an error and HubNet wouldn’t workanymore.
	My problem is not addressed on this page.

	Known Limitations

	Teacher workshops
	HubNet Authoring Guide
	Running HubNet in headless mode
	Getting help

	HubNet Authoring Guide
	Coding HubNet activities
	Setup
	Receiving messages from clients
	Sending messages to clients
	Examples

	How to make a client interface
	View updates on the clients
	Clicking in the view on clients
	Customizing the client’s view
	Plot updates on the clients

	Modeling Commons Guide
	Introduction
	Modeling Commons Accounts
	Uploading Models
	Upload a New Model
	Upload a Child of an Existing Model (“Forking”)

	Updating an Existing Model

	Command Line Switches
	Controlling Guide
	Mathematica Link
	What can I do with it?
	Installation
	Usage
	Known Issues
	Source code
	Credits

	NetLogo 3D
	Introduction
	3D Worlds
	The observer and the 3D view
	Custom Shapes

	Tutorial
	Step 1: Depth
	Step 2: Turtle Movement
	Step 3: Observer Movement

	Dictionary
	Commands and Reporters
	Turtle-related primitives
	Patch-related primitives
	Agentset primitives
	World primitives
	Observer movement primitives
	Link primitives

	Built-In Variables
	Turtles
	Patches

	Primitives
	at-points4.1
	agentset at-points [[x1 y1 z1] [x2 y2 z2] ...]

	distancexyz4.1distancexyz-nowrap4.1
	distancexyz xcor ycor zcordistancexyz-nowrap xcor ycor zcorTurtle CommandPatch Command

	dz4.1
	dzTurtle Command

	facefacexyz4.1
	face agentfacexyz x y zTurtle CommandObserver Movement Command

	left4.1
	left numberTurtle Command

	link-pitch4.1.2
	link-pitchLink Command

	load-shapes-3d4.1
	load-shapes-3d filenameObserver Movement Command

	max-pzcor4.1min-pzcor4.1
	max-pzcormin-pzcor

	neighbors4.1neighbors64.1
	neighborsneighbors6Turtle CommandPatch Command

	orbit-down4.1orbit-left4.1orbit-right4.1orbit-up4.1
	orbit-down numberorbit-left numberorbit-right numberorbit-up numberObserver Movement Command

	__oxcor__oycor__ozcor
	__oxcor__oycor__ozcorObserver Movement Command

	patch4.1
	patch pxcor pycor pzcor

	patch-at4.1
	patch-at dx dy dzTurtle CommandPatch Command

	patch-at-heading-pitch-and-distance4.1
	patch-at-heading-pitch-and-distance heading pitch distanceTurtle CommandPatch Command

	pitch
	pitchTurtle Command

	pzcor
	pzcorPatch CommandTurtle Command

	random-pzcor4.1
	random-pzcor

	random-zcor4.1
	random-zcor

	right4.1
	right numberTurtle Command

	roll
	rollTurtle Command

	roll-left4.1
	roll-left numberTurtle Command

	roll-right4.1
	roll-right numberTurtle Command

	setxyz4.1
	setxyz x y zTurtle CommandObserver Movement Command

	tilt-down4.1tilt-up4.1
	tilt-down numbertilt-up numberTurtle Command

	towards-pitch4.1towards-pitch-nowrap4.1
	towards-pitch agenttowards-pitch-nowrap agentTurtle CommandPatch Command

	towards-pitch-xyz4.1towards-pitch-xyz-nowrap4.1
	towards-pitch-xyz x y ztowards-pitch-xyz-no-wrap x y zTurtle CommandPatch Command

	turtles-at4.1<breeds>-at
	turtles-at dx dy dz<breeds>-at dx dy dzTurtle CommandPatch Command

	world-depth4.1
	world-depth

	zcor
	zcorTurtle Command

	zoom4.1
	zoom numberObserver Movement Command

	Extensions Guide
	Authoring and Sharing
	Using Extensions
	Where extensions are located

	Extension Authoring Introduction
	Technical Details
	Sharing Extensions with the Extension Manager

	Color Picker Guide
	Introduction
	Colors in NetLogo
	Simple Tab
	The Advanced Tab
	Introduction
	Input Format
	Output Format
	Output Formats for Different Contexts
	Details about RGB Output
	Details about the Alpha Bar

	NetLogo 7.0.0 Changes Overview
	Motivation
	Interface Tab
	Overview of Visual Changes to the Interface Tab
	Interface Elements (Widgets)
	Widget Sizes

	New File Format
	Tools in the NetLogo 7 Interface
	Overview: NetLogo Interface Tool Buttons and Dropdown menus
	New Interface Tools
	New Interface Menu

	The Color Picker
	Notifications
	The Info Tab
	Code Tab
	Color Themes and Code Syntax Highlighting
	Code Tab Toolbar
	Code Tab Preferences
	Included Files

	Menu Items
	Preferences Dialog
	File -> Resource Manager dialog

	Tools Menu Changes
	Turtle Shapes Editor and Link Shapes Editor
	Help Menu

	Collection of anonymous usage statistics

	NetLogo Preferences
	Overview
	General Preferences
	User Interface language
	Reload the last used model on startup
	Reload model on external changes
	Bold widget text
	Jump sliders to click location (instead of incrementing)
	UI scale
	Send anonymous usage statistics

	Code Preferences
	Sort “Procedures” menu by
	Always show “Included Files” menu
	Automatically jump to source of compilation error
	Open code tab in separate window on startup
	Auto Indent
	Show line numbers

	Logging Preferences
	Enable logging
	Directory to store logs
	Events to log:

	Color Themes
	Light
	Dark
	Classic

	Arduino
	Using
	Notes
	Compatibility
	Questions

	Primitives
	arduino:primitives
	arduino:primitives

	arduino:ports
	arduino:ports

	arduino:open
	arduino:open port-name

	arduino:close
	arduino:close

	arduino:get
	arduino:get var-name

	arduino:write-string
	arduino:write-string string-message

	arduino:write-int
	arduino:write-int int-message

	arduino:write-byte
	arduino:write-byte byte-message

	arduino:is-open?
	arduino:is-open?

	arduino:debug-to-arduino
	arduino:debug-to-arduino

	arduino:debug-from-arduino
	arduino:debug-from-arduino

	Array
	Using
	When to Use
	Example use of Array Extension

	Primitives
	array:from-list
	array:from-list list

	array:item
	array:item array index

	array:set
	array:set array index value

	array:length
	array:length array

	array:to-list
	array:to-list array

	Bitmap
	Using
	What does the Bitmap Extension do?
	Getting started

	Primitives
	bitmap:average-color
	bitmap:average-color image

	bitmap:channel
	bitmap:channel image channel

	bitmap:copy-to-drawing
	bitmap:copy-to-drawing image x y

	bitmap:copy-to-pcolors
	bitmap:copy-to-pcolors image boolean

	bitmap:difference-rgb
	bitmap:difference-rgb image1 image2

	bitmap:export
	bitmap:export image filename

	bitmap:from-base64
	bitmap:from-base64 base64-string

	bitmap:to-base64
	bitmap:to-base64 base64-string

	bitmap:from-view
	bitmap:from-view

	bitmap:to-grayscale
	bitmap:to-grayscale image

	bitmap:height
	bitmap:height image

	bitmap:import
	bitmap:import filename

	bitmap:scaled
	bitmap:scaled image width height

	bitmap:width
	bitmap:width image

	CSV
	Common use cases and examples
	Read a file all at once
	Read a file one line at a time
	Read a file one line per tick
	Write a file

	Primitives
	Formatting NetLogo data as CSV
	Parsing CSV input to NetLogo data
	csv:from-row
	csv:from-row stringcsv:from-row string delimiter

	csv:from-string
	csv:from-string stringcsv:from-string string delimiter

	csv:from-file
	csv:from-file csv-filecsv:from-file csv-file delimiter

	csv:to-row
	csv:to-row listcsv:to-row list delimiter

	csv:to-string
	csv:to-string listcsv:to-string list delimiter

	csv:to-file
	csv:to-file csv-file listcsv:to-file csv-file list delimiter

	GIS
	Using
	How to use
	Known Issues
	Credits

	Primitives
	RasterDataset Primitives
	Dataset Primitives
	VectorDataset Primitives
	Coordinate System Primitives
	Drawing Primitives
	gis:set-transformation
	gis:set-transformation gis-envelope netlogo-envelope

	gis:set-transformation-ds
	gis:set-transformation-ds gis-envelope netlogo-envelope

	gis:set-world-envelope
	gis:set-world-envelope gis-envelope

	gis:set-world-envelope-ds
	gis:set-world-envelope-ds gis-envelope

	gis:world-envelope
	gis:world-envelope

	gis:envelope-of
	gis:envelope-of thing

	gis:envelope-union-of
	gis:envelope-union-of envelope1 envelope2gis:envelope-union-of envelope1...

	gis:load-coordinate-system
	gis:load-coordinate-system file

	gis:set-coordinate-system
	gis:set-coordinate-system system

	gis:project-lat-lon
	gis:project-lat-lon latitude longitude

	gis:project-lat-lon-from-ellipsoid
	gis:project-lat-lon-from-ellipsoid latitude longitude ellipsoid-radius ellipsoid-inverse-flattening

	gis:load-dataset
	gis:load-dataset file

	gis:store-dataset
	gis:store-dataset dataset file

	gis:type-of
	gis:type-of dataset

	gis:patch-dataset
	gis:patch-dataset patch-variable

	gis:turtle-dataset
	gis:turtle-dataset turtle-set

	gis:link-dataset
	gis:link-dataset link-set

	gis:shape-type-of
	gis:shape-type-of VectorDataset

	gis:property-names
	gis:property-names VectorDataset

	gis:feature-list-of
	gis:feature-list-of VectorDataset

	gis:vertex-lists-of
	gis:vertex-lists-of VectorFeature

	gis:centroid-of
	gis:centroid-of VectorFeature

	gis:random-point-inside
	gis:random-point-inside VectorFeature

	gis:location-of
	gis:location-of Vertex

	gis:set-property-value
	gis:set-property-value VectorFeature property-name value

	gis:property-value
	gis:property-value VectorFeature property-name

	gis:find-features
	gis:find-features VectorDataset property-name specified-value

	gis:find-one-feature
	gis:find-one-feature VectorDataset property-name specified-value

	gis:find-less-than
	gis:find-less-than VectorDataset property-name value

	gis:find-greater-than
	gis:find-greater-than VectorDataset property-name value

	gis:find-range
	gis:find-range VectorDataset property-name minimum-value maximum-value

	gis:property-minimum
	gis:property-minimum VectorDataset property-name

	gis:property-maximum
	gis:property-maximum VectorDataset property-name

	gis:apply-coverage
	gis:apply-coverage VectorDataset property-name patch-variable

	gis:create-turtles-from-points
	gis:create-turtles-from-points VectorDataset breed commands

	gis:create-turtles-from-points-manual
	gis:create-turtles-from-points-manual VectorDataset breed property-mapping commands

	gis:create-turtles-inside-polygon
	gis:create-turtles-inside-polygon VectorFeature breed n commands

	gis:create-turtles-inside-polygon-manual
	gis:create-turtles-inside-polygon-manual VectorFeature breed n property-mapping commands

	gis:coverage-minimum-threshold
	gis:coverage-minimum-threshold

	gis:set-coverage-minimum-threshold
	gis:set-coverage-minimum-threshold new-threshold

	gis:coverage-maximum-threshold
	gis:coverage-maximum-threshold

	gis:set-coverage-maximum-threshold
	gis:set-coverage-maximum-threshold new-threshold

	gis:intersects?
	gis:intersects? x y

	gis:contains?
	gis:contains? x y

	gis:contained-by?
	gis:contained-by? x y

	gis:have-relationship?
	gis:have-relationship? x y

	gis:relationship-of
	gis:relationship-of x y

	gis:intersecting
	patch-set gis:intersecting data

	gis:width-of
	gis:width-of RasterDataset

	gis:height-of
	gis:height-of RasterDataset

	gis:raster-value
	gis:raster-value RasterDataset x y

	gis:set-raster-value
	gis:set-raster-value RasterDataset x y value

	gis:minimum-of
	gis:minimum-of RasterDataset

	gis:maximum-of
	gis:maximum-of RasterDataset

	gis:sampling-method-of
	gis:sampling-method-of RasterDataset

	gis:set-sampling-method
	gis:set-sampling-method RasterDataset sampling-method

	gis:raster-sample
	gis:raster-sample RasterDataset sample-location

	gis:raster-world-envelope
	gis:raster-world-envelope RasterDataset x y

	gis:create-raster
	gis:create-raster width height envelope

	gis:resample
	gis:resample RasterDataset envelope width height

	gis:convolve
	gis:convolve RasterDataset kernel-rows kernel-columns kernel key-column key-row

	gis:apply-raster
	gis:apply-raster RasterDataset patch-variable

	gis:drawing-color
	gis:drawing-color

	gis:set-drawing-color
	gis:set-drawing-color color

	gis:draw
	gis:draw vector-data line-thickness

	gis:fill
	gis:fill vector-data line-thickness

	gis:paint
	gis:paint RasterDataset transparency

	gis:import-wms-drawing
	gis:import-wms-drawing server-url spatial-reference layers transparency

	GoGo
	NetLogoLab and the GoGo Board Extension for sensors and robotics

	NetLogoLab and the GoGo Board Extension
	What is NetLogoLab?
	The GoGo Board NetLogo extension
	GoGo Board: a low-cost robotics and data-logging board
	Sensor and actuator toolkits
	NetLogo models

	How to get a GoGo Board?
	Installing and testing the GoGo Extension
	Windows
	Mac OS X
	Linux

	Usage
	Changes
	Primitives
	Other Outputs
	Utilities
	General
	Sensors
	Outputs and Servos
	gogo:primitives
	gogo:primitives

	gogo:howmany-gogos
	gogo:howmany-gogos

	gogo:init
	gogo:init

	gogo:talk-to-output-ports
	gogo:talk-to-output-ports list-of-portnames

	gogo:talk-to-servo-ports
	gogo:talk-to-servo-ports list-of-portnames

	gogo:set-output-port-power
	gogo:set-output-port-power power-level

	gogo:output-port-on
	gogo:output-port-on

	gogo:output-port-off
	gogo:output-port-off

	gogo:output-port-clockwise
	gogo:output-port-clockwise

	gogo:output-port-counterclockwise
	gogo:output-port-counterclockwise

	gogo:set-servo
	gogo:set-servo number

	gogo:led
	gogo:led on-or-off

	gogo:beep
	gogo:beep

	gogo:read-sensors
	gogo:read-sensors

	gogo:read-sensor
	gogo:read-sensor which-sensor

	gogo:read-all
	gogo:read-all

	gogo:send-bytes
	gogo:send-bytes list

	Examples of NetLogoLab models
	Controlling a car
	A simple sensing project

	LevelSpace
	LevelSpace fundamentals
	Headless and Interactive Models
	Keeping Track of Models
	A general use case: Asking and Reporting
	A general use case: Inter-Model Interactions
	A general Usecase: Tidying up “Dead” Child Models

	Citing LevelSpace in Research
	Primitives
	Commanding and Reporting
	Logic and Control
	Opening and Closing Models
	ls:create-models
	ls:create-models number pathls:create-models number path anonymous command

	ls:create-interactive-models
	ls:create-interactive-models number pathls:create-interactive-models number path anonymous command

	ls:close
	ls:close model-or-list-of-models

	ls:reset
	ls:reset

	ls:ask
	ls:ask model-or-list-of-models command argument

	ls:of
	reporter ls:of model-or-list-of-models

	ls:report
	ls:report model-or-list-of-models reporter argument

	ls:with
	list-of-models ls:with reporter

	ls:let
	ls:let variable-name value

	ls:assign
	ls:assign model-or-list-of-models global-variable value

	ls:models
	ls:models

	ls:show
	ls:show model-or-list-of-models

	ls:show-all
	ls:show-all model-or-list-of-models

	ls:hide
	ls:hide model-or-list-of-models

	ls:hide-all
	ls:hide-all model-or-list-of-models

	ls:path-of
	ls:path-of model-or-list-of-models

	ls:name-of
	ls:name-of model-or-list-of-models

	ls:model-exists?
	ls:model-exists? model-or-list-of-models

	ls:random-seed
	ls:random-seed seed

	Matrix
	Using
	When to Use
	How to Use
	Example

	Primitives
	Matrix creation and conversion to/from lists
	Advanced features
	Matrix data retrieval and manipulation
	Math operations
	matrix:make-constant
	matrix:make-constant n-rows n-cols initialValue

	matrix:make-identity
	matrix:make-identity size

	matrix:from-row-list
	matrix:from-row-list nested-list

	matrix:from-column-list
	matrix:from-column-list nested-list

	matrix:to-row-list
	matrix:to-row-list matrix

	matrix:to-column-list
	matrix:to-column-list matrix

	matrix:copy
	matrix:copy matrix

	matrix:pretty-print-text
	matrix:pretty-print-text matrix

	matrix:get
	matrix:get matrix row-i col-j

	matrix:get-row
	matrix:get-row matrix row-i

	matrix:get-column
	matrix:get-column matrix col-j

	matrix:set
	matrix:set matrix row-i col-j new-value

	matrix:set-row
	matrix:set-row matrix row-i simple-list

	matrix:set-column
	matrix:set-column matrix col-j simple-list

	matrix:swap-rows
	matrix:swap-rows matrix row1 row2

	matrix:swap-columns
	matrix:swap-columns matrix col1 col2

	matrix:set-and-report
	matrix:set-and-report matrix row-i col-j new-value

	matrix:dimensions
	matrix:dimensions matrix

	matrix:submatrix
	matrix:submatrix matrix r1 c1 r2 c2

	matrix:map
	matrix:map anonymous reporter matrixmatrix:map anonymous reporter matrix anything

	matrix:times-scalar
	matrix:times-scalar matrix factor

	matrix:times
	matrix:times m1 m2matrix:times m1 m2 ...

	matrix:*
	m1 matrix:* m2

	matrix:times-element-wise
	matrix:times-element-wise m1 m2

	matrix:plus-scalar
	matrix:plus-scalar matrix number

	matrix:plus
	matrix:plus m1 m2matrix:plus m1 m2 ...

	matrix:+
	m1 matrix:+ m2

	matrix:minus
	matrix:minus m1 m2matrix:minus m1 m2 ...

	matrix:-
	m1 matrix:- m2

	matrix:inverse
	matrix:inverse matrix

	matrix:transpose
	matrix:transpose matrix

	matrix:real-eigenvalues
	matrix:real-eigenvalues matrix

	matrix:imaginary-eigenvalues
	matrix:imaginary-eigenvalues matrix

	matrix:eigenvectors
	matrix:eigenvectors matrix

	matrix:det
	matrix:det matrix

	matrix:rank
	matrix:rank matrix

	matrix:trace
	matrix:trace matrix

	matrix:solve
	matrix:solve A C

	matrix:forecast-linear-growth
	matrix:forecast-linear-growth data-list

	matrix:forecast-compound-growth
	matrix:forecast-compound-growth data-list

	matrix:forecast-continuous-growth
	matrix:forecast-continuous-growth data-list

	matrix:regress
	matrix:regress data-matrix

	Networks
	Usage
	Special agentsets vs normal agentsets

	A note regarding floating point calculations
	Performance
	Primitives
	Generators
	Path and Distance
	Clusterer/Community Detection
	Context Management
	Import and Export
	Centrality Measures
	Clustering Measures
	nw:set-context
	nw:set-context turtleset linkset

	nw:get-context
	nw:get-context

	nw:with-context
	nw:with-context turtleset linkset command-block

	nw:turtles-in-radius
	nw:turtles-in-radius radius

	nw:turtles-in-reverse-radius
	nw:turtles-in-reverse-radius radius

	nw:distance-to
	nw:distance-to target-turtle

	nw:weighted-distance-to
	nw:weighted-distance-to target-turtle weight-variable

	nw:path-to
	nw:path-to target-turtle

	nw:turtles-on-path-to
	nw:turtles-on-path-to target-turtle

	nw:weighted-path-to
	nw:weighted-path-to target-turtle weight-variable

	nw:turtles-on-weighted-path-to
	nw:turtles-on-weighted-path-to target-turtle weight-variable

	nw:mean-path-length
	nw:mean-path-length

	nw:mean-weighted-path-length
	nw:mean-weighted-path-length weight-variable

	nw:betweenness-centrality
	nw:betweenness-centrality

	nw:eigenvector-centrality
	nw:eigenvector-centrality

	nw:page-rank
	nw:page-rank

	nw:closeness-centrality
	nw:closeness-centrality

	nw:weighted-closeness-centrality
	nw:weighted-closeness-centrality link-weight-variable

	nw:clustering-coefficient
	nw:clustering-coefficient

	nw:modularity
	nw:modularity

	nw:bicomponent-clusters
	nw:bicomponent-clusters

	nw:weak-component-clusters
	nw:weak-component-clusters

	nw:louvain-communities
	nw:louvain-communities

	nw:maximal-cliques
	nw:maximal-cliques

	nw:biggest-maximal-cliques
	nw:biggest-maximal-cliques

	nw:generate-preferential-attachment
	nw:generate-preferential-attachment turtle-breed link-breed num-nodes min-degree optional-command-block

	nw:generate-random
	nw:generate-random turtle-breed link-breed num-nodes connection-probability optional-command-block

	nw:generate-watts-strogatz
	nw:generate-watts-strogatz turtle-breed link-breed num-nodes neighborhood-size rewire-probability optional-command-block

	nw:generate-small-world
	nw:generate-small-world turtle-breed link-breed row-count column-count clustering-exponent is-toroidal optional-command-block

	nw:generate-lattice-2d
	nw:generate-lattice-2d turtle-breed link-breed row-count column-count is-toroidal optional-command-block

	nw:generate-ring
	nw:generate-ring turtle-breed link-breed num-nodes optional-command-block

	nw:generate-star
	nw:generate-star turtle-breed link-breed num-nodes optional-command-block

	nw:generate-wheel
	nw:generate-wheel turtle-breed link-breed num-nodes optional-command-block

	nw:save-matrix
	nw:save-matrix file-name

	nw:load-matrix
	nw:load-matrix file-name turtle-breed link-breed optional-command-block

	nw:save-graphml
	nw:save-graphml file-name

	nw:load-graphml
	nw:load-graphml file-name optional-command-block

	nw:load
	nw:load file-name default-turtle-breed default-link-breed optional-command-block

	nw:save
	nw:save file-name

	Palette
	Using the Palette Extension
	Getting Started
	Background
	Review of color representation in NetLogo
	Colors can be represented as NetLogo colors or RGB or RGBA colors
	Transparency
	HSB Color Specification

	More control over the color
	Varying an Agent’s Transparency or Color
	How do I choose a color scheme?
	Decide first whether to use a Sequential, Divergent or Qualitative color scheme
	Additional color considerations

	Should I use a continuous color gradient or just a discrete color set?
	Example Models
	Further Reading

	Primitives
	palette:alpha-of
	palette:alpha-of color

	palette:with-alpha
	color palette:with-alpha number

	palette:alpha
	palette:alpha

	palette:set-alpha
	palette:set-alpha number

	palette:transparency-of
	palette:transparency-of color

	palette:with-transparency
	color palette:with-transparency number

	palette:transparency
	palette:transparency

	palette:set-transparency
	palette:set-transparency number

	palette:hue-of
	palette:hue-of color

	palette:with-hue
	color palette:with-hue number

	palette:hue
	palette:hue

	palette:set-hue
	palette:set-hue number

	palette:saturation-of
	palette:saturation-of color

	palette:with-saturation
	color palette:with-saturation number

	palette:saturation
	palette:saturation

	palette:set-saturation
	palette:set-saturation number

	palette:brightness-of
	palette:brightness-of color

	palette:with-brightness
	color palette:with-brightness number

	palette:brightness
	palette:brightness

	palette:set-brightness
	palette:set-brightness number

	palette:R-of
	palette:R-of color

	palette:with-R
	color palette:with-R number

	palette:R
	palette:R

	palette:set-R
	palette:set-R number

	palette:G-of
	palette:G-of color

	palette:with-G
	color palette:with-G number

	palette:G
	palette:G

	palette:set-G
	palette:set-G number

	palette:B-of
	palette:B-of color

	palette:with-B
	color palette:with-B number

	palette:B
	palette:B

	palette:set-B
	palette:set-B number

	palette:scale-gradient
	palette:scale-gradient rgb-color-list number range1 range2

	palette:scale-gradient-hsb
	palette:scale-gradient-hsb rgb-color-list number range1 range2

	palette:scheme-colors
	palette:scheme-colors scheme-type scheme-color number-of-classes

	palette:scale-scheme
	palette:scale-scheme scheme-type scheme-color number-of-classes number range1 range2

	palette:scheme-dialog
	palette:scheme-dialog

	References

	Profiler
	Using the Profiler Extension
	How to use
	Example

	Primitives
	profiler:calls
	profiler:calls procedure-name

	profiler:exclusive-time
	profiler:exclusive-time procedure-name

	profiler:inclusive-time
	profiler:inclusive-time procedure-name

	profiler:start
	profiler:start

	profiler:stop
	profiler:stop

	profiler:reset
	profiler:reset

	profiler:report
	profiler:report

	profiler:data
	profiler:data

	Python
	Using
	Error handling

	Configuring
	Primitives
	py:setup
	py:setup python-executable

	py:python
	py:python

	py:python2
	py:python2

	py:python3
	py:python3

	py:run
	py:run python-statement

	py:runresult
	py:runresult python-expression

	py:set
	py:set variable-name value

	Resource
	Using
	Purpose
	Getting Started

	Primitives
	resource:get
	resource:get name

	resource:list
	resource:list

	Rnd
	Usage
	A note about performance
	Primitives
	AgentSet Primitives
	List Primitives
	rnd:weighted-one-of
	rnd:weighted-one-of agentset reporter

	rnd:weighted-n-of
	rnd:weighted-n-of size agentset [reporter]

	rnd:weighted-n-of-with-repeats
	rnd:weighted-n-of-with-repeats size agentset [reporter]

	rnd:weighted-one-of-list
	rnd:weighted-one-of-list list anonymous-reporter

	rnd:weighted-n-of-list
	rnd:weighted-n-of-list size list anonymous-reporter

	rnd:weighted-n-of-list-with-repeats
	rnd:weighted-n-of-list-with-repeats size list anonymous-reporter

	Sound
	Using
	How to Use
	MIDI support

	Primitives
	sound:drums
	sound:drums

	sound:instruments
	sound:instruments

	sound:play-drum
	sound:play-drum drum velocity

	sound:play-note
	sound:play-note instrument keynumber velocity duration

	sound:play-note-later
	sound:play-note-later delay instrument keynumber velocity duration

	Drum Names
	Instrument Names

	Simple R
	Using
	Error handling

	Citing Simple R in Research
	Primitives
	sr:setup
	sr:setup

	sr:run
	sr:run R-statementsr:run R-statement anything...

	sr:runresult
	sr:runresult R-expression

	sr:set
	sr:set variable-name value

	sr:set-agent
	sr:set-agent r-variable-name agent or agentset agent-variable-namesr:set-agent r-variable-name agent or agentset agent-variable-name1 agent-variable-name2...

	sr:set-agent-data-frame
	sr:set-agent-data-frame r-variable-name agents agent-variable-namesr:set-agent-data-frame r-variable-name agents agent-variable-name1 agent-variable-name2...

	sr:set-data-frame
	sr:set-data-frame r-variable-name column-name list or anythingsr:set-data-frame variable-name column-name1 list or anything 1 column-name2 list or anything 2...

	sr:set-list
	sr:set-list r-variable-name anythingsr:set-list r-variable-name anything1 anything2...

	sr:set-named-list
	sr:set-named-list r-variable-name column-name list or anythingsr:set-named-list r-variable-name column-name1 list or anything 1 column-name2 list or anything 2...

	sr:set-plot-device
	sr:set-plot-device

	sr:r-home
	sr:r-home

	sr:show-console
	sr:show-console

	Transitioning from the old R extension
	Using the Simple R code converter
	Handling a named list

	Table
	Using
	When to Use
	Example
	Manipulating Tables
	Key Restrictions

	Primitives
	table:clear
	table:clear table

	table:counts
	table:counts list

	table:group-agents
	table:group-agents agentset anonymous reporter

	table:group-items
	table:group-items list anonymous-reporter

	table:from-list
	table:from-list list

	table:from-json
	table:from-json string

	table:from-json-file
	table:from-json-file filename

	table:get
	table:get table key

	table:get-or-default
	table:get-or-default table key default-value

	table:has-key?
	table:has-key? table key

	table:keys
	table:keys table

	table:length
	table:length table

	table:make
	table:make

	table:put
	table:put table key value

	table:remove
	table:remove table key

	table:to-list
	table:to-list table

	table:to-json
	table:to-json table

	table:values
	table:values table

	Time
	Quickstart
	What is it?
	Installation
	Examples
	Data Types
	Behavior
	Format
	Date Format
	Supported Format Characters
	Date-time Bounds
	User Defined Formatting

	Primitives
	Date/Time Utilities
	Time Series Tool

	back to top
	Discrete Event Scheduler

	Building with SBT
	Authors
	Feedback? Bugs? Feature Requests?
	Credits
	Terms of Use
	Primitives

	Vid
	Concepts
	Video Source
	Source Lifecycle
	Video Recorder
	Known Issues

	Primitives
	vid:camera-names
	vid:camera-names

	vid:camera-open
	vid:camera-open

	vid:camera-select
	vid:camera-select

	vid:movie-select
	vid:movie-select

	vid:movie-open
	vid:movie-open filename

	vid:movie-open-remote
	vid:movie-open-remote url

	vid:close
	vid:close

	vid:start
	vid:start

	vid:stop
	vid:stop

	vid:status
	vid:status

	vid:capture-image
	vid:capture-image width height

	vid:set-time
	vid:set-time seconds

	vid:show-player
	vid:show-player width height

	vid:hide-player
	vid:hide-player

	vid:record-view
	vid:record-view

	vid:record-interface
	vid:record-interface

	vid:record-source
	vid:record-source

	vid:recorder-status
	vid:recorder-status

	vid:reset-recorder
	vid:reset-recorder

	vid:start-recorder
	vid:start-recorder

	vid:save-recording
	vid:save-recording filename

	View2.5D
	How to Use
	Incorporating Into Models
	Feedback

	Primitives
	view2.5d:patch-view
	view2.5d:patch-view Title Reporter

	view2.5d:decorate-patch-view
	view2.5d:decorate-patch-view Title

	view2.5d:undecorate-patch-view
	view2.5d:undecorate-patch-view Title

	view2.5d:turtle-view
	view2.5d:turtle-view Title Agents Reporter

	view2.5d:update-all-patch-views
	view2.5d:update-all-patch-views

	view2.5d:update-patch-view
	view2.5d:update-patch-view Title

	view2.5d:update-turtle-view
	view2.5d:update-turtle-view Title Agents

	view2.5d:get-z-scale
	view2.5d:get-z-scale title

	view2.5d:set-z-scale
	view2.5d:set-z-scale Title new-z-scale

	view2.5d:set-turtle-stem-thickness
	view2.5d:set-turtle-stem-thickness Title thickness

	view2.5d:set-turtle-stem-color
	view2.5d:set-turtle-stem-color Title colorReporter

	view2.5d:show-links-xy-plane
	view2.5d:show-links-xy-plane Title

	view2.5d:show-links-xyz
	view2.5d:show-links-xyz Title

	view2.5d:get-observer-angles
	view2.5d:get-observer-angles Title

	view2.5d:set-observer-angles
	view2.5d:set-observer-angles Title heading pitch

	view2.5d:get-observer-xy-focus
	view2.5d:get-observer-xy-focus Title

	view2.5d:set-observer-xy-focus
	view2.5d:set-observer-xy-focus Title number ycor

	view2.5d:get-observer-distance
	view2.5d:get-observer-distance Title

	view2.5d:set-observer-distance
	view2.5d:set-observer-distance Title new-distance

	view2.5d:remove-patch-view
	view2.5d:remove-patch-view Title

	view2.5d:remove-turtle-view
	view2.5d:remove-turtle-view Title

	view2.5d:remove-all-patch-views
	view2.5d:remove-all-patch-views

	view2.5d:remove-all-turtle-views
	view2.5d:remove-all-turtle-views

	view2.5d:count-windows
	view2.5d:count-windows

	FAQ (Frequently Asked Questions)
	General
	Why is it called NetLogo?
	How do I cite NetLogo or HubNet in a publication?
	How do I cite a model from the Models Library in a publication?
	Where and when was NetLogo created?
	What programming language was NetLogo written in?
	What’s the relationship between StarLogo and NetLogo?
	Under what license is NetLogo released? Is the source code available?
	Do you offer any workshops or other training opportunities for NetLogo?
	Are there any NetLogo textbooks?
	Is NetLogo available in other languages besides English?
	Is NetLogo compiled or interpreted?
	Has anyone built a model of <x>?
	Are NetLogo models runs scientifically reproducible?
	Will NetLogo and NetLogo 3D remain separate?
	Can I run NetLogo on my phone or tablet?

	Downloading
	Can I have multiple versions of NetLogo installed at the same time?
	I’m on a UNIX system and I can’t untar the download. Why?
	How do I install NetLogo unattended?

	Running
	Can I run NetLogo from a CD, a network drive, or a USB drive?
	Why is NetLogo so much slower when I unplug my Windows laptop?
	Why does NetLogo bundle Java?
	How come NetLogo won’t start up on my Linux machine?
	When I try to install NetLogo on Windows, I see “Windows protected your PC”
	When I try to start NetLogo on Windows I get an error “The JVM could not be started”. Help!
	NetLogo won’t start on Mac OS Sierra (or later)
	NetLogo won’t start on Windows or crashes suddenly on Mac OS Sierra
	How can I speed up the launching of NetLogo on a remote server that is behind a proxy?
	Can I run NetLogo from the command line, without the GUI?
	Does NetLogo take advantage of multiple processors?
	Can I distribute NetLogo model runs across a cluster or grid of computers?
	Is there any way to recover lost work if NetLogo crashes or freezes?
	Why is HubNet Discovery Not Working?

	Usage
	When I move the speed slider all the way to the right, why does my model seem to stop?
	Can I use the mouse to “paint” in the view?
	How big can my model be? How many turtles, patches, procedures, buttons, and so on can my model contain?
	Where are the NetLogo Configuration Files?
	Can I use GIS data in NetLogo?
	My model runs slowly. How can I speed it up?
	Can I have more than one model open at a time?
	Can I change the choices in a chooser on the fly?
	Can I divide the code for my model up into several files?

	Programming
	How does the NetLogo language differ from other Logos?
	How come my model from an earlier NetLogo doesn’t work right?
	How do I take the negative of a number?
	My turtle moved forward 1, but it’s still on the same patch. Why?
	How do I keep my turtles on patch centers?
	patch-ahead 1 is reporting the same patch my turtle is already standing on. Why?
	How do I give my turtles “vision”?
	Can agents sense what’s in the drawing layer?
	I’m getting numbers like 0.10000000004 and 0.799999999999 instead of 0.1 and 0.8. Why?
	The documentation says that random-float 1 might return 0 but will never return 1. What if I want 1 to beincluded?
	Why is the number value in my monitor widget changing even though nothing is happening in my model?
	How can I keep two turtles from occupying the same patch?
	How can I find out if a turtle is dead?
	Does NetLogo have arrays?
	Does NetLogo have hash tables or associative arrays?
	How can I use different patch “neighborhoods” (circular, Von Neumann, Moore, etc.)?
	How can I convert an agentset to a list of agents, or vice versa?
	How do I stop foreach?
	I’m trying to make a list. Why do I keep getting the error “Expected a literal value”?

	BehaviorSpace
	Why are the rows in my BehaviorSpace table results out of order?
	How do I measure runs every n ticks?
	I’m varying a global variable I declared in the Code tab, but it doesn’t work. Why?

	NetLogo 3D
	Does NetLogo work with my stereoscopic device?

	Extensions
	I’m writing an extension. Why does the compiler say it can’t find org.nlogo.api?

	NetLogo Dictionary
	Categories
	Turtle-related
	Patch-related
	Link-related
	Agentset
	Color
	Control flow and logic
	Anonymous Procedures
	World
	Perspective
	HubNet
	Input/output
	File
	List
	String
	Mathematical
	Plotting
	BehaviorSpace
	System

	Built-In Variables
	Turtles
	Patches
	Links

	Keywords
	Constants
	Mathematical Constants
	Boolean Constants
	Color Constants

	A
	abs1.0
	abs number

	acos1.3
	acos number

	all?4.0
	all? agentset [reporter]

	and1.0
	boolean1 and boolean2

	any?2.0
	any? agentset

	approximate-hsb4.0
	approximate-hsb hue saturation brightness

	approximate-rgb4.0
	approximate-rgb red green blue

	Arithmetic Operators+1.0*1.0-1.0/1.0^1.0<1.0>1.0=1.0!=1.0<=1.0>=1.0
	asin1.3
	asin number

	ask1.0
	ask agentset [commands]ask agent [commands]

	ask-concurrent4.0
	ask-concurrent agentset [commands]

	at-points1.0
	agentset at-points [[x1 y1] [x2 y2] ...]

	atan1.0
	atan x y

	autoplot?1.0autoplotx?7.0autoploty?7.0
	autoplot?autoplotx?autoploty?

	auto-plot-off1.0auto-plot-x-off7.0auto-plot-y-off7.0auto-plot-on1.0auto-plot-x-on7.0auto-plot-y-on7.0
	auto-plot-offauto-plot-x-offauto-plot-y-offauto-plot-onauto-plot-x-onauto-plot-y-on

	B
	back1.0bk1.0
	back numberTurtle Command

	base-colors4.0
	base-colors

	beep2.1
	beep

	behaviorspace-experiment-name5.2
	behaviorspace-experiment-name

	behaviorspace-run-number4.1.1
	behaviorspace-run-number

	both-ends4.0
	both-endsLink Command

	breed
	breedTurtle CommandLink Command

	breed
	breed [<breeds> <breed>]

	but-first1.0butfirst1.0bf1.0but-last1.0butlast1.0bl1.0
	but-first listbut-first stringbut-last listbut-last string

	C
	can-move?3.1
	can-move? distanceTurtle Command

	carefully2.1
	carefully [commands1] [commands2]

	ceiling1.0
	ceiling number

	clear-all1.0ca1.0
	clear-all

	clear-all-plots1.0
	clear-all-plots

	clear-drawing3.0cd3.0
	clear-drawing

	clear-globals5.2
	clear-globals

	clear-links4.0
	clear-links

	clear-output1.0
	clear-output

	clear-patches1.0cp1.0
	clear-patches

	clear-plot
	clear-plot

	clear-ticks5.0
	clear-ticks

	clear-turtles1.0ct1.0
	clear-turtles

	color
	colorTurtle CommandLink Command

	cos1.0
	cos number

	count1.0
	count agentset

	create-ordered-turtles4.0cro4.0
	create-ordered-turtles numbercreate-ordered-turtles number [commands]create-ordered<breeds> numbercreate-ordered<breeds> number [commands]

	create-<breed>-tocreate-<breeds>-tocreate-<breed>-fromcreate-<breeds>-fromcreate-<breed>-withcreate-<breeds>-withcreate-link-to4.0create-links-to4.0create-link-from4.0create-links-from4.0create-link-with4.0create-links-with4.0
	create-<breed>-to turtlecreate-<breed>-to turtle [commands]create-<breed>-from turtlecreate-<breed>-from turtle [commands]create-<breed>-with turtlecreate-<breed>-with turtle [commands]create-<breeds>-to turtlesetcreate-<breeds>-to turtleset [commands]create-<breeds>-from turtlesetcreate-<breeds>-from turtleset [commands]create-<breeds>-with turtlesetcreate-<breeds>-with turtleset [commands]create-link-to turtlecreate-link-to turtle [commands]create-link-from turtlecreate-link-from turtle [commands]create-link-with turtlecreate-link-with turtle [commands]create-links-to turtlesetcreate-links-to turtleset [commands]create-links-from turtlesetcreate-links-from turtleset [commands]create-links-with turtlesetcreate-links-with turtleset [commands]Turtle Command

	create-turtles1.0crt1.0
	create-turtles numbercreate-turtles number [commands]create-<breeds> numbercreate-<breeds> number [commands]

	create-temporary-plot-pen1.1
	create-temporary-plot-pen string

	D
	date-and-time3.0
	date-and-time

	die1.0
	dieTurtle CommandLink Command

	diffuse1.0
	diffuse patch-variable number

	diffuse41.0
	diffuse4 patch-variable number

	directed-link-breed
	directed-link-breed [<link-breeds> <link-breed>]

	display1.0
	display

	distance1.0
	distance agentTurtle CommandPatch Command

	distancexy1.0
	distancexy x yTurtle CommandPatch Command

	downhill1.0downhill41.0
	downhill patch-variabledownhill4 patch-variableTurtle Command

	dx1.0dy1.0
	dxdyTurtle Command

	E
	empty?1.0
	empty? listempty? string

	end
	end

	end14.0
	end1Link Command

	end24.0
	end2Link Command

	error5.0
	error value

	error-message2.1
	error-message

	every1.0
	every number [commands]

	exp1.0
	exp number

	export-view3.0export-interface2.0export-output1.0export-plot1.0export-all-plots1.2.1export-world1.0
	export-view filenameexport-interface filenameexport-output filenameexport-plot plotname filenameexport-all-plots filenameexport-world filename

	extensions
	extensions [name ...]

	extract-hsb1.0
	extract-hsb color

	extract-rgb1.0
	extract-rgb color

	F
	face3.0
	face agentTurtle Command

	facexy3.0
	facexy x yTurtle Command

	file-at-end?2.0
	file-at-end?

	file-close2.0
	file-close

	file-close-all2.0
	file-close-all

	file-delete2.0
	file-delete string

	file-exists?2.0
	file-exists? string

	file-flush4.0
	file-flush

	file-open2.0
	file-open string

	file-print2.0
	file-print value

	file-read2.0
	file-read

	file-read-characters2.0
	file-read-characters number

	file-read-line2.0
	file-read-line

	file-show2.0
	file-show value

	file-type2.0
	file-type value

	file-write2.0
	file-write value

	filter1.3
	filter reporter list

	first1.0
	first listfirst string

	floor1.0
	floor number

	follow3.0
	follow turtle

	follow-me3.0
	follow-meTurtle Command

	foreach1.3
	foreach list command(foreach list1 ... command)

	forward1.0fd1.0
	forward numberTurtle Command

	fput1.0
	fput item list

	G
	globals
	globals [var1 ...]

	H
	hatch1.0
	hatch number [commands]hatch-<breeds> number [commands]Turtle Command

	heading
	headingTurtle Command

	hidden?
	hidden?Turtle CommandLink Command

	hide-link4.0
	hide-linkLink Command

	hide-turtle1.0ht1.0
	hide-turtleTurtle Command

	histogram1.0
	histogram list

	home1.0
	homeTurtle Command

	home-directory6.4.1
	home-directory

	hsb1.0
	hsb hue saturation brightness

	hubnet-broadcast1.1
	hubnet-broadcast tag-name value

	hubnet-broadcast-clear-output4.1
	hubnet-broadcast-clear-output

	hubnet-broadcast-message4.1
	hubnet-broadcast-message value

	hubnet-clear-override4.1hubnet-clear-overrides4.1
	hubnet-clear-override client agent-or-set variable-namehubnet-clear-overrides client

	hubnet-clients-list5.0
	hubnet-clients-list

	hubnet-enter-message?1.2.1
	hubnet-enter-message?

	hubnet-exit-message?1.2.1
	hubnet-exit-message?

	hubnet-fetch-message1.1
	hubnet-fetch-message

	hubnet-kick-client5.0
	hubnet-kick-client client-name

	hubnet-kick-all-clients5.0
	hubnet-kick-all-clients

	hubnet-message1.1
	hubnet-message

	hubnet-message-source1.1
	hubnet-message-source

	hubnet-message-tag1.1
	hubnet-message-tag

	hubnet-message-waiting?1.1
	hubnet-message-waiting?

	hubnet-reset1.1
	hubnet-reset

	hubnet-reset-perspective4.1
	hubnet-reset-perspective tag-name

	hubnet-send1.1
	hubnet-send string tag-name value
	hubnet-send list-of-strings tag-name value

	hubnet-send-clear-output4.1
	hubnet-send-clear-output string
	hubnet-send-clear-output list-of-strings

	hubnet-send-follow4.1
	hubnet-send-follow client-name agent radius

	hubnet-send-message4.1
	hubnet-send-message string value

	hubnet-send-override4.1
	hubnet-send-override client-name agent-or-set variable-name[reporter]

	hubnet-send-watch4.1
	hubnet-send-watch client-name agent

	I
	if1.0
	if boolean [commands]

	ifelse1.0
	ifelse boolean1 [commands1] [elsecommands](ifelse boolean1 [commands1] boolean2 [commands2] ... [elsecommands])6.1

	ifelse-value2.0
	ifelse-value boolean1 [reporter1] [elsereporter](ifelse-value boolean1 [reporter1] boolean2 [reporter2] ... [elsereporter])6.1

	import-drawing3.0
	import-drawing filename

	import-pcolors3.0
	import-pcolors filename

	import-pcolors-rgb4.0
	import-pcolors-rgb filename

	import-world1.0
	import-world filename

	in-cone3.0
	agentset in-cone distance angleTurtle Command

	in-<breed>-neighbor?in-link-neighbor?4.0
	in-<breed>-neighbor? agentin-link-neighbor? turtleTurtle Command

	in-<breed>-neighborsin-link-neighbors4.0
	in-<breed>-neighborsin-link-neighborsTurtle Command

	in-<breed>-fromin-link-from4.0
	in-<breed>-from turtlein-link-from turtleTurtle Command

	__includes4.0
	__includes [filename ...]

	in-radius1.0
	agentset in-radius numberTurtle CommandPatch Command

	insert-item6.0.2
	insert-item index list valueinsert-item index string1 string2

	inspect1.1
	inspect agent

	int1.0
	int number

	is-agent?1.2.1is-agentset?1.2.1is-anonymous-command?6.0is-anonymous-reporter?6.0is-boolean?1.2.1is-directed-link?4.0is-link?4.0is-link-set?4.0is-list?1.0is-number?1.2.1is-patch?1.2.1is-patch-set?4.0is-string?1.0is-turtle?1.2.1is-turtle-set?4.0is-undirected-link?4.0
	is-agent? valueis-agentset? valueis-anonymous-command? valueis-anonymous-reporter? valueis-boolean? valueis-<breed>? valueis-<link-breed>? valueis-directed-link? valueis-link? valueis-link-set? valueis-list? valueis-number? valueis-patch? valueis-patch-set? valueis-string? valueis-turtle? valueis-turtle-set? valueis-undirected-link? value

	item1.0
	item index listitem index string

	J
	jump1.0
	jump numberTurtle Command

	L
	label
	labelTurtle CommandLink Command

	label-color
	label-colorTurtle CommandLink Command

	last1.0
	last listlast string

	layout-circle4.0
	layout-circle agentset radiuslayout-circle list-of-turtles radius

	layout-radial4.0
	layout-radial turtle-set link-set root-agent

	layout-spring4.0
	layout-spring turtle-set link-set spring-constant spring-length repulsion-constant

	layout-tutte4.0
	layout-tutte turtle-set link-set radius

	left1.0lt1.0
	left numberTurtle Command

	length1.0
	length listlength string

	let2.1
	let variable value

	link4.0
	link end1 end2<breed> end1 end2

	link-heading4.0
	link-headingLink Command

	link-length4.0
	link-lengthLink Command

	link-set4.0
	link-set value(link-set value1 value2 ...)

	link-shapes4.0
	link-shapes

	links4.0
	links

	links-own
	links-own [var1 ...]<link-breeds>-own [var1 ...]

	list1.0
	list value1 value2(list value1 ...)

	ln1.0
	ln number

	log1.0
	log number base

	loop1.0
	loop [commands]

	lput1.0
	lput value list

	M
	map1.3
	map reporter list(map reporter list1 ...)

	max1.0
	max list

	max-n-of4.0
	max-n-of number agentset [reporter]

	max-one-of1.0
	max-one-of agentset [reporter]

	max-pxcor3.1max-pycor3.1
	max-pxcormax-pycor

	mean1.0
	mean list

	median1.0
	median list

	member?1.0
	member? value listmember? string1 string2member? agent agentset

	min1.0
	min list

	min-n-of4.0
	min-n-of number agentset [reporter]

	min-one-of1.0
	min-one-of agentset [reporter]

	min-pxcor3.1min-pycor3.1
	min-pxcormin-pycor

	mod1.0
	number1 mod number2

	modes2.0
	modes list

	mouse-down?1.0
	mouse-down?

	mouse-inside?3.0
	mouse-inside?

	mouse-xcor1.0mouse-ycor1.0
	mouse-xcormouse-ycor

	move-to4.0
	move-to agentTurtle Command

	my-<breeds>my-links4.0
	my-<breeds>my-linksTurtle Command

	my-in-<breeds>my-in-links4.0
	my-in-<breeds>my-in-linksTurtle Command

	my-out-<breeds>my-out-links4.0
	my-out-<breeds>my-out-linksTurtle Command

	myself1.0
	myselfTurtle CommandPatch CommandLink Command

	N
	n-of3.1
	n-of size agentsetn-of size list

	n-values2.0
	n-values size reporter

	neighbors1.1neighbors41.1
	neighborsneighbors4Turtle CommandPatch Command

	<breed>-neighborslink-neighbors4.0
	<breed>-neighborslink-neighborsTurtle Command

	<breed>-neighbor?link-neighbor?4.0
	<breed>-neighbor? turtlelink-neighbor? turtleTurtle Command

	netlogo-version3.0
	netlogo-version

	netlogo-web?5.2
	netlogo-web?

	new-seed3.0
	new-seed

	no-display1.0
	no-display

	nobody
	nobody

	no-links4.0
	no-links

	no-patches4.0
	no-patches

	not1.0
	not boolean

	no-turtles4.0
	no-turtles

	O
	of4.0
	[reporter] of agent[reporter] of agentset

	one-of1.0
	one-of agentsetone-of list

	or1.0
	boolean1 or boolean2

	other4.0
	other agentsetTurtle CommandPatch Command

	other-end4.0
	other-endTurtle CommandLink Command

	out-<breed>-neighbor?out-link-neighbor?4.0
	out-<breed>-neighbor? turtleout-link-neighbor? turtleTurtle Command

	out-<breed>-neighborsout-link-neighbors4.0
	out-<breed>-neighborsout-link-neighborsTurtle Command

	out-<breed>-toout-link-to4.0
	out-<breed>-to turtleout-link-to turtleTurtle Command

	output-print2.1output-show2.1output-type2.1output-write2.1
	output-print valueoutput-show valueoutput-type valueoutput-write value

	P
	patch1.0
	patch xcor ycor

	patch-ahead2.0
	patch-ahead distanceTurtle Command

	patch-at1.0
	patch-at dx dyTurtle CommandPatch Command

	patch-at-heading-and-distance2.0
	patch-at-heading-and-distance heading distanceTurtle CommandPatch Command

	patch-here1.0
	patch-hereTurtle Command

	patch-left-and-ahead2.0patch-right-and-ahead2.0
	patch-left-and-ahead angle distancepatch-right-and-ahead angle distanceTurtle Command

	patch-set4.0
	patch-set value1(patch-set value1 value2 ...)

	patch-size4.1
	patch-size

	patches1.0
	patches

	patches-own
	patches-own [var1 ...]

	pcolor
	pcolorPatch CommandTurtle Command

	pen-down1.0pd1.0pen-erase3.0pe3.0pen-up1.0pu1.0
	pen-downpen-erasepen-upTurtle Command

	pen-mode
	Turtle Command

	pen-size
	Turtle Command

	plabel
	plabelPatch CommandTurtle Command

	plabel-color
	plabel-colorPatch CommandTurtle Command

	plot1.0
	plot number

	plot-name1.0
	plot-name

	plot-pen-exists?4.0
	plot-pen-exists? string

	plot-pen-down1.0plot-pen-up1.0
	plot-pen-downplot-pen-up

	plot-pen-reset1.0
	plot-pen-reset

	plotxy1.0
	plotxy number1 number2

	plot-x-min1.0plot-x-max1.0plot-y-min1.0plot-y-max1.0
	plot-x-minplot-x-maxplot-y-minplot-y-max

	position1.0
	position item listposition string1 string2

	precision1.0
	precision number places

	print1.0
	print value

	pxcorpycor
	pxcorpycorPatch CommandTurtle Command

	R
	random1.0
	random number

	random-float2.0
	random-float number

	random-exponential1.2.1random-gamma2.0random-normal1.2.1random-poisson1.2.1
	random-exponential meanrandom-gamma alpha lambdarandom-normal mean standard-deviationrandom-poisson mean

	random-pxcor3.1random-pycor3.1
	random-pxcorrandom-pycor

	random-seed1.0
	random-seed number

	random-xcor3.1random-ycor3.1
	random-xcorrandom-ycor

	range6.0
	range stop(range start stop)(range start stop step)

	read-from-string1.1
	read-from-string string

	reduce1.3
	reduce reporter list

	remainder1.2.1
	remainder number1 number2

	remove1.0
	remove item listremove string1 string2

	remove-duplicates1.0
	remove-duplicates list

	remove-item2.0
	remove-item index listremove-item index string

	repeat1.0
	repeat number [commands]

	replace-item1.0
	replace-item index list valuereplace-item index string1 string2

	report1.0
	report value

	reset-perspective3.0rp3.0
	reset-perspective

	reset-ticks4.0
	reset-ticks

	reset-timer1.0
	reset-timer

	resize-world4.1
	resize-world min-pxcor max-pxcor min-pycor max-pycor

	reverse1.0
	reverse listreverse string

	rgb1.0
	rgb red green blue

	ride3.0
	ride turtle

	ride-me3.0
	ride-meTurtle Command

	right1.0rt1.0
	right numberTurtle Command

	round1.0
	round number

	run1.3runresult1.3
	run command(run command input1 ...)run stringrunresult reporter(runresult reporter input1 ...)runresult string

	S
	scale-color1.0
	scale-color color number range1 range2

	self1.3
	selfTurtle CommandPatch CommandLink Command

	; (semicolon)
	; comments

	sentence1.0se1.0
	sentence value1 value2(sentence value1 ...)

	set1.0
	set variable value

	set-current-directory2.0
	set-current-directory string

	set-current-plot1.0
	set-current-plot plotname

	set-current-plot-pen1.0
	set-current-plot-pen penname

	set-default-shape1.0
	set-default-shape turtles stringset-default-shape links stringset-default-shape breed string

	set-histogram-num-bars1.0
	set-histogram-num-bars number

	__set-line-thickness
	__set-line-thickness numberTurtle Command

	set-patch-size4.1
	set-patch-size size

	set-plot-background-color6.0.2
	set-plot-background-color color

	set-plot-pen-color1.0
	set-plot-pen-color color

	set-plot-pen-interval1.0
	set-plot-pen-interval number

	set-plot-pen-mode1.0
	set-plot-pen-mode number

	setup-plots5.0
	setup-plots

	set-plot-x-range1.0set-plot-y-range1.0
	set-plot-x-range min maxset-plot-y-range min max

	set-topology7.0
	set-topology wraps-in-x? wraps-in-y?

	setxy1.0
	setxy x yTurtle Command

	shade-of?1.0
	shade-of? color1 color2

	shape
	shapeTurtle CommandLink Command

	shapes2.1
	shapes

	show1.0
	show value

	show-turtle1.0st1.0
	show-turtleTurtle Command

	show-link4.0
	show-linkLink Command

	shuffle2.0
	shuffle list

	sin1.0
	sin number

	size
	sizeTurtle Command

	sort1.0
	sort listsort agentset

	sort-by1.3
	sort-by reporter listsort-by reporter agentset

	sort-on5.0
	sort-on [reporter] agentset

	sprout1.0
	sprout number [commands]sprout-<breeds> number [commands]Patch Command

	sqrt1.0
	sqrt number

	stamp1.0
	stampTurtle CommandLink Command

	stamp-erase3.1
	stamp-eraseTurtle CommandLink Command

	standard-deviation1.0
	standard-deviation list

	startup
	startup

	stop1.0
	stop

	stop-inspecting5.2
	stop-inspecting agent

	stop-inspecting-dead-agents5.2
	stop-inspecting-dead-agents

	subject3.0
	subject

	sublist2.1substring1.0
	sublist list position1 position2substring string position1 position2

	subtract-headings2.1
	subtract-headings heading1 heading2

	sum1.0
	sum list

	T
	tan1.0
	tan number

	thickness
	thicknessLink Command

	tick4.0
	tick

	tick-advance4.0
	tick-advance number

	ticks4.0
	ticks

	tie4.0
	tieLink Command

	tie-mode
	tie-modeLink Command

	timer1.0
	timer

	to
	to procedure-nameto procedure-name [input1 ...]

	to-report
	to-report procedure-nameto-report procedure-name [input1 ...]

	towards1.0
	towards agentTurtle CommandPatch Command

	towardsxy1.0
	towardsxy x yTurtle CommandPatch Command

	turtle1.0
	turtle number<breed> number

	turtle-set4.0
	turtle-set value1(turtle-set value1 value2 ...)

	turtles1.0
	turtles

	turtles-at1.0
	turtles-at dx dy<breeds>-at dx dyTurtle CommandPatch Command

	turtles-here1.0
	turtles-here<breeds>-hereTurtle CommandPatch Command

	turtles-on2.0
	turtles-on turtle or patchturtles-on turtleset or agentset<breeds>-on turtle or patch<breeds>-on turtleset or patchsetTurtle CommandPatch Command

	turtles-own
	turtles-own [var1 ...]<breeds>-own [var1 ...]

	type1.0
	type value

	U
	undirected-link-breed
	undirected-link-breed [<link-breeds> <link-breed>]

	untie4.0
	untieLink Command

	up-to-n-of6.1
	up-to-n-of size agentsetup-to-n-of size list

	update-plots5.0
	update-plots

	uphill1.0uphill41.0
	uphill patch-variableuphill4 patch-variableTurtle Command

	user-directory3.1
	user-directory

	user-file3.1
	user-file

	user-new-file3.1
	user-new-file

	user-input1.1
	user-input value

	user-message1.1
	user-message value

	user-one-of3.1
	user-one-of value list-of-choices

	user-yes-or-no?2.0
	user-yes-or-no? value

	V
	variance1.0
	variance list

	W
	wait1.0
	wait number

	watch3.0
	watch agent

	watch-me3.0
	watch-meTurtle CommandPatch CommandLink Command

	while1.0
	while [reporter] [commands]

	who
	whoTurtle Command

	who-are-not6.3.1
	agentset who-are-not agentsetagentset who-are-not agent

	with1.0
	agentset with [reporter]

	<breed>-withlink-with4.0
	<breed>-with turtlelink-with turtleTurtle Command

	with-max2.1
	agentset with-max [reporter]

	with-min2.1
	agentset with-min [reporter]

	with-local-randomness4.0
	with-local-randomness [commands]

	without-interruption1.1
	without-interruption [commands]

	word1.0
	word value1 value2(word value1 ...)

	world-width3.1world-height3.1
	world-widthworld-height

	wrap-color1.0
	wrap-color number

	write2.0
	write value

	X
	xcor
	xcorTurtle Command

	xor1.0
	boolean1 xor boolean2

	Y
	ycor
	ycorTurtle Command

	->
	->6.0
	[[args] -> commands][[args] -> reporter]

